Transcriptome-wide identification, classification, and characterization of NAC family genes in Bamboo Bambusa emeiensis

被引:2
作者
Li, Yuanqiu [1 ,2 ]
Luo, Chaobing [1 ]
Chen, Ying [1 ,2 ]
Fu, Chun [1 ]
Yang, Yaojun [1 ]
机构
[1] Leshan Normal Univ, Bamboo Dis & Pests Control & Resources Dev Key La, Coll Life Sci, 778 Riverside Rd, Central Dist 614000, Leshan, Peoples R China
[2] Xihua Univ, Coll Food & Biol Engn, Chengdu, Peoples R China
基金
中国国家自然科学基金;
关键词
NAC; Transcriptome; Bambusa emeiensis; Herbivore; Cyrtotrachelus buqueti; EXPRESSION; RESISTANCE; RESOURCE; GENETICS; PROTEIN;
D O I
10.1007/s11738-020-03051-x
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
The NAC (NAM-ATAF1/2-CUC) transcription factors (TFs) regulate numerous biological processes, such as growth, development, and stress responses. The yield and quality of Bambusa emeiensis, an economically important bamboo, decrease under stress caused by insect herbivores, such as Cyrtotrachelus buqueti. In the present study, 33 BeNACs, including 4 membrane-associated TFs, were identified in B. emeiensis transcriptome. Phylogenetic analysis revealed that BeNACs and their Arabidopsis thaliana counterparts clustered into 4 major groups, which were subdivided into 17 subgroups. Conserved motif and phylogenetic analyses revealed that BeNACs with close evolutionary relationships contained highly similar motifs. The N-terminal regions of BeNACs had NAC domains. In addition, the C-termini and transmembrane domains of four BeNACs contained transmembrane motifs. Transcriptome analysis revealed that majority of BeNACs were highly expressed under herbivory. The expression levels of eight BeNACs, including predicted stress-related and membrane-bound BeNACs, in bamboo shoots, shells, trichomes, and leaves and under two treatments (fed and unfed) were assessed through quantitative real-time polymerase chain reaction. Several BeNACs (BeNAC4, 10, 19, and 24) were considered as closely related to responses to herbivore. This study lays a foundation for future study of BeNACs' functions in bamboo development and stress response.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Transcriptome-wide identification, classification, and characterization of NAC family genes in Bamboo Bambusa emeiensis
    Yuanqiu Li
    Chaobing Luo
    Ying Chen
    Chun Fu
    Yaojun Yang
    Acta Physiologiae Plantarum, 2020, 42
  • [2] Transcriptome-wide identification and characterization of the Sox gene family and microsatellites for Corbicula fluminea
    Zhu, Chuankun
    Zhang, Lei
    Ding, Huaiyu
    Pan, Zhengjun
    PEERJ, 2019, 7
  • [3] Integrated Analysis of Metabolome and Transcriptome of Bambusa emeiensis Shoots in Response to Bamboo Snout Beetle Cyrtotrachelus buqueti (Coleoptera: Curculionidae)
    Tang, Hao
    Li, Yuanqiu
    Luo, Chaobing
    PHYTON-INTERNATIONAL JOURNAL OF EXPERIMENTAL BOTANY, 2022, 91 (06) : 1227 - 1244
  • [4] Transcriptome-Wide Identification, Classification, and Characterization of AP2/ERF Family Genes in the Desert Moss Syntrichia caninervis
    Li, Xiaoshuang
    Zhang, Daoyuan
    Gao, Bei
    Liang, Yuqing
    Yang, Honglan
    Wang, Yucheng
    Wood, Andrew J.
    FRONTIERS IN PLANT SCIENCE, 2017, 8
  • [5] Transcriptome-Wide Identification and Characterization of MYB Transcription Factor Genes in the Laticifer Cells of Hevea brasiliensis
    Wang, Ying
    Zhan, Di-Feng
    Li, Hui-Liang
    Guo, Dong
    Zhu, Jia-Hong
    Peng, Shi-Qing
    FRONTIERS IN PLANT SCIENCE, 2017, 8
  • [6] Transcriptome-wide identification and characterization of genes exhibit allele-specific imprinting in maize embryo and endosperm
    Dong, Xiaomei
    Luo, Haishan
    Bi, Wenjing
    Chen, Hanyu
    Yu, Shuai
    Zhang, Xiaoyu
    Dai, Yuxin
    Cheng, Xipeng
    Xing, Yupeng
    Fan, Xiaoqin
    Zhu, Yanbin
    Guo, Yanling
    Meng, Dexuan
    BMC PLANT BIOLOGY, 2023, 23 (01)
  • [7] TRANSCRIPTOME-WIDE IDENTIFICATION AND FUNCTIONAL CHARACTERIZATION OF BBX TRANSCRIPTION FACTOR FAMILY IN TOONA SINENSIS
    Ren Liping
    Zhang Jinbo
    Cao Xiaohan
    Wan Wenyang
    Yin Dandan
    Su Xiaohui
    PAKISTAN JOURNAL OF BOTANY, 2021, 53 (03) : 915 - 921
  • [8] Transcriptome-Wide Identification and Characterization of the JAZ Gene Family in Mentha canadensis L.
    Xu, Dong-Bei
    Ma, Ya-Nan
    Qin, Teng-Fei
    Tang, Wei-Lin
    Qi, Xi-Wu
    Wang, Xia
    Liu, Rui-Cen
    Fang, Hai-Ling
    Chen, Ze-Qun
    Liang, Cheng-Yuan
    Wu, Wei
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2021, 22 (16)
  • [9] Transcriptome-wide identification and characterization of Ornithogalum saundersiae phenylalanine ammonia lyase gene family
    Wang, Zhi-Biao
    Chen, Xi
    Wang, Wei
    Cheng, Ke-Di
    Kong, Jian-Qiang
    RSC ADVANCES, 2014, 4 (52) : 27159 - 27175
  • [10] Transcriptome-wide identification and characterization of CAD isoforms specific for podophyllotoxin biosynthesis from Podophyllum hexandrum
    Bhattacharyya, Dipto
    Hazra, Saptarshi
    Banerjee, Anindyajit
    Datta, Riddhi
    Kumar, Deepak
    Chakrabarti, Saikat
    Chattopadhyay, Sharmila
    PLANT MOLECULAR BIOLOGY, 2016, 92 (1-2) : 1 - 23