First-principles calculation of electronic structures and optical properties of wurtzite InxAl1-xN alloys

被引:20
作者
Chen, Q. Y. [1 ,2 ]
Xu, M. [1 ,2 ]
Zhou, H. P. [1 ,2 ]
Duan, M. Y. [1 ,2 ]
Zhu, W. J. [1 ,2 ,3 ]
He, H. L. [1 ,2 ,3 ]
机构
[1] Sichuan Normal Univ, Inst Solid State Phys, Lab Low Dimens Struct Phys, Chengdu 610068, Peoples R China
[2] Sichuan Normal Univ, Sch Phys & Elect Engn, Lab Low Dimens Struct Phys, Chengdu 610068, Peoples R China
[3] China Acad Engn Phys, Inst Fluid Phys, Key Lab Shock Wave & Detonat Phys Res, Mianyang 621900, Peoples R China
关键词
density functional theory (DFT); electronic structures; optical property; wurtzite; InxAl1-xN alloy;
D O I
10.1016/j.physb.2007.09.087
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
The electronic structures and optical properties of wurtzite InxAl1-xN have been calculated using a first-principles self-consistent method. The calculated lattice constants and band gap bowing parameter are in good agreement with the experimental results and/or values given by other calculation methods. It is interestingly found that the peaks of total density of states (TDOS) in the conduction band have a tendency of shifting to the lower energy as In concentration increases in InxAl1-xN; while in the deep valence band, the peak splits into three peaks. The optical properties such as the dielectric function, reflectivity, absorption coefficient, refractive index, and electron energy-loss function are also presented. The main peak in imaginary part of dielectric function spectrum, the absorption edge and the peak in L(omega) spectrum are found to have a remarkable red-shift as In mole fraction increases. Furthermore, the optical properties of wurtzite InxAl1-xN are discussed based on the band structures and density of states (DOS) analysis. (c) 2007 Elsevier B.V. All rights reserved.
引用
收藏
页码:1666 / 1672
页数:7
相关论文
共 37 条
[21]   Colloquium:: Reactive plasmas as a versatile nanofabrication tool [J].
Ostrikov, K .
REVIEWS OF MODERN PHYSICS, 2005, 77 (02) :489-511
[22]   Band gap bowing and refractive index spectra of polycrystalline AlxIn1-xN films deposited by sputtering [J].
Peng, T ;
Piprek, J ;
Qiu, G ;
Olowolafe, JO ;
Unruh, KM ;
Swann, CP ;
Schubert, EF .
APPLIED PHYSICS LETTERS, 1997, 71 (17) :2439-2441
[23]  
Perdew JP, 1997, PHYS REV LETT, V78, P1396, DOI 10.1103/PhysRevLett.77.3865
[24]   OPTICAL-ABSORPTION EDGE OF SINGLE-CRYSTAL AIN PREPARED BY A CLOSE-SPACED VAPOR PROCESS [J].
PERRY, PB ;
RUTZ, RF .
APPLIED PHYSICS LETTERS, 1978, 33 (04) :319-321
[25]   QUASI-PARTICLE BAND-STRUCTURE OF ALN AND GAN [J].
RUBIO, A ;
CORKILL, JL ;
COHEN, ML ;
SHIRLEY, EL ;
LOUIE, SG .
PHYSICAL REVIEW B, 1993, 48 (16) :11810-11816
[26]   CRYSTAL-STRUCTURE REFINEMENT OF AIN AND GAN [J].
SCHULZ, H ;
THIEMANN, KH .
SOLID STATE COMMUNICATIONS, 1977, 23 (11) :815-819
[27]   Ab initio investigations of optical properties of the high-pressure phases of ZnO [J].
Sun, J ;
Wang, HT ;
He, JL ;
Tian, YJ .
PHYSICAL REVIEW B, 2005, 71 (12)
[28]   OPTICAL BAND-GAP OF INDIUM NITRIDE [J].
TANSLEY, TL ;
FOLEY, CP .
JOURNAL OF APPLIED PHYSICS, 1986, 59 (09) :3241-3244
[29]   Phase diagram, chemical bonds, and gap bowing of cubic InxAl1-xN alloys:: Ab initio calculations [J].
Teles, LK ;
Scolfaro, LMR ;
Leite, JR ;
Furthmuller, J ;
Bechstedt, F .
JOURNAL OF APPLIED PHYSICS, 2002, 92 (12) :7109-7113
[30]   Optical band gap in Ga1-xInxN (O<x<0.2) on GaN by photoreflection spectroscopy [J].
Wetzel, C ;
Takeuchi, T ;
Yamaguchi, S ;
Katoh, H ;
Amano, H ;
Akasaki, I .
APPLIED PHYSICS LETTERS, 1998, 73 (14) :1994-1996