First-principles calculation of electronic structures and optical properties of wurtzite InxAl1-xN alloys

被引:20
作者
Chen, Q. Y. [1 ,2 ]
Xu, M. [1 ,2 ]
Zhou, H. P. [1 ,2 ]
Duan, M. Y. [1 ,2 ]
Zhu, W. J. [1 ,2 ,3 ]
He, H. L. [1 ,2 ,3 ]
机构
[1] Sichuan Normal Univ, Inst Solid State Phys, Lab Low Dimens Struct Phys, Chengdu 610068, Peoples R China
[2] Sichuan Normal Univ, Sch Phys & Elect Engn, Lab Low Dimens Struct Phys, Chengdu 610068, Peoples R China
[3] China Acad Engn Phys, Inst Fluid Phys, Key Lab Shock Wave & Detonat Phys Res, Mianyang 621900, Peoples R China
关键词
density functional theory (DFT); electronic structures; optical property; wurtzite; InxAl1-xN alloy;
D O I
10.1016/j.physb.2007.09.087
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
The electronic structures and optical properties of wurtzite InxAl1-xN have been calculated using a first-principles self-consistent method. The calculated lattice constants and band gap bowing parameter are in good agreement with the experimental results and/or values given by other calculation methods. It is interestingly found that the peaks of total density of states (TDOS) in the conduction band have a tendency of shifting to the lower energy as In concentration increases in InxAl1-xN; while in the deep valence band, the peak splits into three peaks. The optical properties such as the dielectric function, reflectivity, absorption coefficient, refractive index, and electron energy-loss function are also presented. The main peak in imaginary part of dielectric function spectrum, the absorption edge and the peak in L(omega) spectrum are found to have a remarkable red-shift as In mole fraction increases. Furthermore, the optical properties of wurtzite InxAl1-xN are discussed based on the band structures and density of states (DOS) analysis. (c) 2007 Elsevier B.V. All rights reserved.
引用
收藏
页码:1666 / 1672
页数:7
相关论文
共 37 条
[1]   Density-functional theory band gap of wurtzite InN [J].
Bagayoko, D ;
Franklin, L .
JOURNAL OF APPLIED PHYSICS, 2005, 97 (12)
[2]   Full potential linearized augmented plane wave calculations of positronic and electronic charge densities of zinc-blende AlN, InN and their alloy Al0.5In0.5N [J].
Bousahla, Z ;
Abbar, B ;
Bouhafs, B ;
Tadjer, A .
JOURNAL OF SOLID STATE CHEMISTRY, 2005, 178 (06) :2117-2127
[3]   Ab initio phonon dispersions of wurtzite AlN, GaN, and InN [J].
Bungaro, C ;
Rapcewicz, K ;
Bernholc, J .
PHYSICAL REVIEW B, 2000, 61 (10) :6720-6725
[4]   CALCULATED STRUCTURAL PHASE-TRANSITIONS OF ALUMINUM NITRIDE UNDER PRESSURE [J].
CHRISTENSEN, NE ;
GORCZYCA, I .
PHYSICAL REVIEW B, 1993, 47 (08) :4307-4314
[5]  
Davydov VY, 2002, PHYS STATUS SOLIDI B, V229, pR1, DOI 10.1002/1521-3951(200202)229:3<R1::AID-PSSB99991>3.0.CO
[6]  
2-O
[7]   Pressure dependence of energy band gaps for AlxGa1-xN, InxGa1-xN and InxAl1-xN -: art. no. 94 [J].
Dridi, Z ;
Bouhafs, B ;
Ruterana, P .
NEW JOURNAL OF PHYSICS, 2002, 4 :94.1-94.15
[8]   Extreme softening of Vanderbilt pseudopotentials:: General rules and case studies of first-row and d-electron elements [J].
Furthmüller, J ;
Käckell, P ;
Bechstedt, F ;
Kresse, G .
PHYSICAL REVIEW B, 2000, 61 (07) :4576-4587
[9]   X-ray absorption near-edge fine structure study of AlInN semiconductors [J].
Guo, QX ;
Ding, J ;
Tanaka, T ;
Nishio, M ;
Ogawa, H .
APPLIED PHYSICS LETTERS, 2005, 86 (11) :1-3
[10]   Physical properties of InN with the band gap energy of 1.1eV [J].
Inushima, T ;
Mamutin, VV ;
Vekshin, VA ;
Ivanov, SV ;
Sakon, T ;
Motokawa, M ;
Ohoya, S .
JOURNAL OF CRYSTAL GROWTH, 2001, 227 :481-485