Bioactive factors secreted by Bifidobacterium breve B-3 enhance barrier function in human intestinal Caco-2 cells

被引:0
作者
Kurose, Y. [1 ]
Minami, J. [2 ]
Sen, A. [2 ]
Iwabuchi, N. [2 ]
Abe, F. [2 ]
Xiao, J. [3 ]
Suzuki, T. [1 ]
机构
[1] Hiroshima Univ, Grad Sch Biosphere Sci, Dept Biofunct Sci & Technol, 1-4-4 Kagamiyama, Higashihiroshima 7398528, Japan
[2] Morinaga Milk Ind Co Ltd, Food Ingredients & Technol Inst, Zama, Kanagawa 2528583, Japan
[3] Morinaga Milk Ind Co Ltd, Next Generat Sci Inst, Zama, Kanagawa 2528583, Japan
基金
日本学术振兴会;
关键词
bifidobacterium; intestinal barrier; claudin-4; caco-2; cells; PROTEIN-KINASE; EXPRESSION; OCCLUDIN; CLAUDIN-4; INCREASES; PHOSPHORYLATION; DISRUPTION; INTEGRITY; OBESITY; MOUSE;
D O I
10.3920/BM2018.0062
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
Intestinal barrier function is closely related to intestinal health and diseases. Recent studies demonstrate that some probiotic and commensal bacteria secrete metabolites that are capable of affecting the intestinal functions. The present study examined an enhancing effect of bioactive factors secreted by Bifidobacterium breve strain B-3 on the intestinal tight junction (TJ) barrier integrity in human intestinal Caco-2 cells. Administration of conditioned medium obtained from B. breve strain B-3 (B3CM) to Caco-2 cells for 24 h increased trans-epithelial electrical resistance (TER), a TJ barrier indicator, across their monolayers. Immunoblot, immunofluorescence, and qPCR analyses demonstrated that B3CM increased an integral TJ protein, claudin4 expression. In luciferase reporter assay, the administration of B3CM enhanced the claudin-4 promoter activity, indicating the transcriptional upregulation of claudin-4. Site-directed mutation of specificity protein 1 (Spl) binding sites in the claudin-4 promoter sequence and suppression of Spl expression by siRNA technology dearly reduced the enhancing effect of B3CM on daudin-4 promoter activity. Liquid chromatography/mass spectrometry detected a significant amount of acetic acid in B3CM (28.3 mM). The administration of acetic acid to Caco-2 cells partially mimicked a B3CM-mediated increase in TER, but failed to increase daudin-4 expression. Taken together, bioactive factors secreted by B. breve B-3 enhanced the TJ barrier integrity in intestinal Caco-2 cells. Transcriptional regulation of claudin-4 through Spl is at least in part one of the underlying molecular mechanisms. In addition, acetic acid contributes to the B3CM-mediated barrier effect independently of claudin-4 expression.
引用
收藏
页码:89 / 100
页数:12
相关论文
共 50 条
  • [1] Differential Effects of Flavonoids on Barrier Integrity in Human Intestinal Caco-2 Cells
    Noda, Sakino
    Tanabe, Soichi
    Suzuki, Takuya
    JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY, 2012, 60 (18) : 4628 - 4633
  • [2] 3,5,7,3′,4′-Pentamethoxyflavone Enhances the Barrier Function through Transcriptional Regulation of the Tight Junction in Human Intestinal Caco-2 Cells
    Mayangsari, Yunika
    Sugimachi, Natsumi
    Xu, Wenxi
    Mano, Chinatsu
    Tanaka, Yuki
    Ueda, Osamu
    Sakuta, Tomohiro
    Suzuki, Yoshiharu
    Yamamoto, Yoshinari
    Suzuki, Takuya
    JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY, 2021, 69 (35) : 10174 - 10183
  • [3] Flavonoids modulate tight junction barrier functions in hyperglycemic human intestinal Caco-2 cells
    Sharma, Sapna
    Tripathi, Prabhanshu
    Sharma, Jeetesh
    Dixit, Aparna
    NUTRITION, 2020, 78
  • [4] Bifidobacterium lactis 420 and fish oil enhance intestinal epithelial integrity in Caco-2 cells
    Mokkala, Kati
    Laitinen, Kirsi
    Roytio, Henna
    NUTRITION RESEARCH, 2016, 36 (03) : 246 - 252
  • [5] Resveratrol enhances intestinal barrier function by ameliorating barrier disruption in Caco-2 cell monolayers
    Mayangsari, Yunika
    Suzuki, Takuya
    JOURNAL OF FUNCTIONAL FOODS, 2018, 51 : 39 - 46
  • [6] Naringenin enhances intestinal barrier function through the expression and cytoskeletal association of tight junction proteins in Caco-2 cells
    Noda, Sakino
    Tanabe, Soichi
    Suzuki, Takuya
    MOLECULAR NUTRITION & FOOD RESEARCH, 2013, 57 (11) : 2019 - 2028
  • [7] Effects of tributyltin on barrier functions in human intestinal Caco-2 cells
    Tsukazaki, M
    Satsu, H
    Mori, A
    Sugita-Konishi, Y
    Shimizu, M
    BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 2004, 315 (04) : 991 - 997
  • [8] Zinc Supplementation Modifies Tight Junctions and Alters Barrier Function of CACO-2 Human Intestinal Epithelial Layers
    Wang, Xuexuan
    Valenzano, Mary Carmen
    Mercado, Joanna M.
    Zurbach, E. Peter
    Mullin, James M.
    DIGESTIVE DISEASES AND SCIENCES, 2013, 58 (01) : 77 - 87
  • [9] Aronia berry inhibits disruption of Caco-2 intestinal barrier function
    Valdez, Jonathan C.
    Cho, Junhyo
    Bolling, Bradley W.
    ARCHIVES OF BIOCHEMISTRY AND BIOPHYSICS, 2020, 688
  • [10] Transcellular transport of aconitine across human intestinal Caco-2 cells
    Yang, Cuiping
    Li, Zheng
    Zhang, Tianhong
    Liu, Fei
    Ruan, Jinxiu
    Zhang, Zhenqing
    FOOD AND CHEMICAL TOXICOLOGY, 2013, 57 : 195 - 200