Privacy-preserving imputation of missing data

被引:17
|
作者
Jagannathan, Geetha [1 ]
Wright, Rebecca N. [1 ]
机构
[1] Stevens Inst Technol, Dept Comp Sci, Hoboken, NJ 07030 USA
基金
美国国家科学基金会;
关键词
data cleaning; data imputation; privacy-preserving protocols;
D O I
10.1016/j.datak.2007.06.013
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Handling missing data is a critical step to ensuring good results in data mining. Like most data mining algorithms, existing privacy-preserving data mining algorithms assume data is complete. In order to maintain privacy in the data mining process while cleaning data, privacy-preserving methods of data cleaning are required. In this paper, we address the problem of privacy-preserving data imputation of missing data. We present a privacy-preserving protocol for filling in missing values using a lazy decision-tree imputation algorithm for data that is horizontally partitioned between two parties. The participants of the protocol learn only the imputed values. The computed decision tree is not learned by either party. (c) 2007 Elsevier B.V. All rights reserved.
引用
收藏
页码:40 / 56
页数:17
相关论文
共 50 条
  • [1] Privacy-preserving data imputation
    Jagannathan, Geetha
    Wright, Rebecca N.
    ICDM 2006: SIXTH IEEE INTERNATIONAL CONFERENCE ON DATA MINING, WORKSHOPS, 2006, : 535 - +
  • [2] Privacy-Preserving SRS Data Anonymization by Incorporating Missing Values
    Lin, Wen-Yang
    Hsu, Kuang-Yung
    Shen, Zih-Xun
    2018 CONFERENCE ON TECHNOLOGIES AND APPLICATIONS OF ARTIFICIAL INTELLIGENCE (TAAI), 2018, : 106 - 109
  • [3] Privacy-preserving genotype imputation with fully homomorphic encryption
    Gursoy, Gamze
    Chielle, Eduardo
    Brannon, Charlotte M.
    Maniatakos, Michail
    Gerstein, Mark
    CELL SYSTEMS, 2022, 13 (02) : 173 - +
  • [4] Privacy-preserving of SVM over vertically partitioned with imputing missing data
    Omer, Mohammed Z.
    Gao, Hui
    Mustafa, Nadir
    DISTRIBUTED AND PARALLEL DATABASES, 2017, 35 (3-4) : 363 - 382
  • [5] Privacy-Preserving Collaborative Data Collection and Analysis With Many Missing Values
    Sei, Yuichi
    Onesimu, J. Andrew
    Okumura, Hiroshi
    Ohsuga, Akihiko
    IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, 2023, 20 (03) : 2158 - 2173
  • [6] Privacy-preserving of SVM over vertically partitioned with imputing missing data
    Mohammed Z. Omer
    Hui Gao
    Nadir Mustafa
    Distributed and Parallel Databases, 2017, 35 : 363 - 382
  • [7] Privacy-preserving genotype imputation in a trusted execution environment
    Dokmai, Natnatee
    Kockan, Can
    Zhu, Kaiyuan
    Wang, XiaoFeng
    Sahinalp, S. Cenk
    Cho, Hyunghoon
    CELL SYSTEMS, 2021, 12 (10) : 983 - +
  • [8] Privacy-preserving data mining
    Agrawal, R
    Srikant, R
    SIGMOD RECORD, 2000, 29 (02) : 439 - 450
  • [9] Privacy-Preserving Data Publishing
    Liu, Ruilin
    Wang, Hui
    2010 IEEE 26TH INTERNATIONAL CONFERENCE ON DATA ENGINEERING WORKSHOPS (ICDE 2010), 2010, : 305 - 308
  • [10] FedIMPUTE: Privacy-preserving missing value imputation for multi-site heterogeneous electronic health records
    Li, Siqi
    Yan, Mengying
    Yuan, Ruizhi
    Liu, Molei
    Liu, Nan
    Hong, Chuan
    JOURNAL OF BIOMEDICAL INFORMATICS, 2025, 165