Biological potential of four indigenous tree species from seasonally dry tropical forest for soil restoration

被引:17
作者
Ceccon, Eliane k [1 ]
Sanchez, Itzel [2 ]
Powers, Jennifer S. [3 ]
机构
[1] UNAM, Ctr Reg Invest Multidisciplinarias, Cuernavaca 62210, Morelos, Mexico
[2] Univ Nacl Autonoma Mexico, Fac Ciencias, Mexico City, DF, Mexico
[3] Univ Minnesota, Dept Ecol Evolut & Behav & Plant Biol, St Paul, MN 55108 USA
关键词
Multi-purpose species; Decomposition rate; Litterfall; Agroforestry systems; Carbon; Nitrogen; LEAF-LITTER DECOMPOSITION; NUTRIENT LIMITATION; PLANTATION FORESTS; DYNAMICS; AVAILABILITY; CONSEQUENCES; ACCUMULATION; REGENERATION; SUCCESSION; SECONDARY;
D O I
10.1007/s10457-014-9782-6
中图分类号
S3 [农学(农艺学)];
学科分类号
0901 ;
摘要
Litterfall and its subsequent decomposition in the soil are two essential ecosystem processes. In order to determine the biological potential of a species to aid soil restoration, it is necessary to evaluate litter production, its temporal variation, and rates of decomposition and nutrient cycling. In this study, we examined patterns of litterfall production, quality, and decomposition of two slow-growing (Crescentia alata and Eysenhardtia polystachya) and two fast-growing (Leucaena leucocephala and Pithecellobium dulce), multi-purpose indigenous species from seasonally dry tropical forest, in a 10-year-old plantation in Morelos, Mexico. Average litterfall was 7.82 +/- A 2.69 Mg ha(-1) year(-1) and varied significantly among species as follows: P. dulce > L. leucocephala > C. alata = E. polstachya. Leaf litter comprised the highest fraction in all species studied. In a litterbag experiment, all species had fast mass loss in the first 183 days of decomposition, coinciding with the rainy season. L. leucocephala had significantly higher decomposition than the other species. Nitrogen percentages increased significantly as decomposition progressed for all species except for E. polystachya while Carbon percentages during decomposition significantly decreased only in C. alata and L. leucocephala. C. alata had the highest average C/N ratio and L. leucocephala the lowest. We recommended for soil biological restoration, P. dulce because it is a fast-growing tree, with a rapid canopy closure and a high litter production and L. Leucocephala, which produces large amounts of rapidly decomposing mulch with high amount of nutrients, which can be rapidly released into the soil.
引用
收藏
页码:455 / 467
页数:13
相关论文
共 63 条
[1]  
Addicott T, 1978, TROPICAL TREES LIVIN, P381
[3]  
Alvarez J., 2001, ACTA ZOO MEX, V1, P11
[4]  
ANDERSON J M, 1983, P287
[5]  
[Anonymous], 2002, COMMUNITIES ECOSYSTE
[6]  
[Anonymous], 1983, COSTA RICAN NATURAL
[7]   Leaf litter breakdown in natural and plantation forests of the Lama forest reserve in Benin [J].
Attignon, SE ;
Weibel, D ;
Lachat, T ;
Sinsin, B ;
Nagel, P ;
Peveling, R .
APPLIED SOIL ECOLOGY, 2004, 27 (02) :109-124
[8]   Litter fall and decomposition in primary, secondary and plantation forests in the Brazilian Amazon [J].
Barlow, Jos ;
Gardner, Toby A. ;
Ferreira, Leandro V. ;
Peres, Carlos A. .
FOREST ECOLOGY AND MANAGEMENT, 2007, 247 (1-3) :91-97
[9]  
Batis MAI, 1999, ARBOLES ARBUSTOS NAT
[10]  
Berg B., 2008, PLANT LITTER DECOMPO, V2nd, DOI [10.1007/978-3-662-05349-2, DOI 10.1007/978-3-662-05349-2]