Modular terpene synthesis enabled by mild electrochemical couplings

被引:110
作者
Harwood, Stephen J. [1 ]
Palkowitz, Maximilian D. [1 ]
Gannett, Cara N. [2 ]
Perez, Paulo [3 ]
Yao, Zhen [4 ]
Sun, Lijie [4 ]
Abruna, Hector D. [2 ]
Anderson, Scott L. [3 ]
Baran, Phil S. [1 ]
机构
[1] Scripps Res, Dept Chem, La Jolla, CA 92037 USA
[2] Cornell Univ, Dept Chem & Chem Biol, Baker Lab, Ithaca, NY 14853 USA
[3] Univ Utah, Dept Chem, Salt Lake City, UT 84112 USA
[4] Asymchem Life Sci Tianjin Co Ltd, TEDA Tianjin, Tianjin 300457, Peoples R China
关键词
CALIFORNIA RED SCALE; TRISUBSTITUTED ALKENES; SILVER NANOPARTICLE; GLASSY-CARBON; ELECTRODES; IDENTIFICATION; CATALYSIS; ACID; CARBOMETALATION; GENERATION;
D O I
10.1126/science.abn1395
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The synthesis of terpenes is a large field of research that is woven deeply into the history of chemistry. Terpene biosynthesis is a case study of how the logic of a modular design can lead to diverse structures with unparalleled efficiency. This work leverages modern nickel-catalyzed electrochemical sp(2)-sp(3) decarboxylative coupling reactions, enabled by silver nanoparticle-modified electrodes, to intuitively assemble terpene natural products and complex polyenes by using simple modular building blocks. The step change in efficiency of this approach is exemplified through the scalable preparation of 13 complex terpenes, which minimized protecting group manipulations, functional group interconversions, and redox fluctuations. The mechanistic aspects of the essential functionalized electrodes are studied in depth through a variety of spectroscopic and analytical techniques.
引用
收藏
页码:745 / +
页数:413
相关论文
共 106 条
[1]   Synthesis of (+/-)-ambrox from (E)-nerolidol and beta-ionone via allylic alcohol [2,3] sigmatropic rearrangement [J].
Barrero, AF ;
Altarejos, J ;
AlvarezManzaneda, EJ ;
Ramos, JM ;
Salido, S .
JOURNAL OF ORGANIC CHEMISTRY, 1996, 61 (06) :2215-2218
[2]   A status review of terpenes and their separation methods [J].
Ben Salha, Ghada ;
Abderrabba, Manef ;
Labidi, Jalel .
REVIEWS IN CHEMICAL ENGINEERING, 2021, 37 (03) :433-447
[3]  
Bhosale MA, 2015, CURR ORG CHEM, V19, P708
[4]   Ambergris as an overlooked historical marine resource: its biology and role as a global economic commodity [J].
Brito, Cristina ;
Jordao, Vera L. ;
Pierce, Graham J. .
JOURNAL OF THE MARINE BIOLOGICAL ASSOCIATION OF THE UNITED KINGDOM, 2016, 96 (03) :585-596
[5]   Total Synthesis of Celastrol, Development of a Platform to Access Celastroid Natural Products [J].
Camelio, Andrew M. ;
Johnson, Trevor C. ;
Siegel, Dionicio .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2015, 137 (37) :11864-11867
[6]   Sustainable Preparation of Supported Metal Nanoparticles and Their Applications in Catalysis [J].
Campelo, Juan M. ;
Luna, Diego ;
Luque, Rafael ;
Marinas, Jose M. ;
Romero, Antonio A. .
CHEMSUSCHEM, 2009, 2 (01) :18-45
[7]   CYCLONERODIOL BIOSYNTHESIS AND THE ENZYMATIC CONVERSION OF FARNESYL TO NEROLIDYL PYROPHOSPHATE [J].
CANE, DE ;
IYENGAR, R ;
SHIAO, MS .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1981, 103 (04) :914-931
[8]   THE SYNTHESIS OF (3R)-NEROLIDOL [J].
CANE, DE ;
HA, HJ ;
MCILWAINE, DB ;
PASCOE, KO .
TETRAHEDRON LETTERS, 1990, 31 (52) :7553-7554
[9]   Nickel-catalyzed electrochemical couplings of vinyl halides:: Synthetic and stereochemical aspects [J].
Cannes, C ;
Condon, S ;
Durandetti, M ;
Périchon, J ;
Nédélec, JY .
JOURNAL OF ORGANIC CHEMISTRY, 2000, 65 (15) :4575-4583
[10]   2-(acyloxy)ethylphosphonate analogues of prenyl pyrophosphates: Synthesis and biological characterization [J].
Cermak, DM ;
Wiemer, DF ;
Lewis, K ;
Hohl, RJ .
BIOORGANIC & MEDICINAL CHEMISTRY, 2000, 8 (12) :2729-2737