An efficient tree architecture for modulo 2(n)+1 multiplication

被引:47
|
作者
Wang, ZD
Jullien, GA
Miller, WC
机构
[1] University of Windsor, Windsor, Ont. N9B 3P4
关键词
D O I
10.1007/BF00929618
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Module 2(n) + 1 multiplication plays an important role in the Fermat number transform and residue number systems; the diminished-1 representation of numbers has been found most suitable for representing the elements of the rings. Existing algorithms for module (2(n) + 1) multiplication either use recursive module (2(n) + 1) addition, or a regular binary multiplication integrated with the module reduction operation. Although most often adopted for large n, this latter approach requires conversions between the diminished-1 and binary representations. In this paper we propose a parallel fine-grained architecture, based on a Wallace tree, for module (2(n) + 1) multiplication which does not require any conversions; the use of a Wallace tree considerably improves the speed of the multiplier. This new architecture exhibits an extremely modular structure with associated VLSI implementation advantages. The critical path delay and the hardware requirements of the new multiplier are similar to that of a corresponding n x n bit binary multiplier.
引用
收藏
页码:241 / 248
页数:8
相关论文
共 50 条
  • [1] Simplified architecture for modulo (2n+1) multiplication
    Chinese Acad of Sciences, Beijing, China
    IEEE Trans Comput, 3 (333-337):
  • [2] A simplified architecture for modulo (2n+1) multiplication
    Ma, YT
    IEEE TRANSACTIONS ON COMPUTERS, 1998, 47 (03) : 333 - 337
  • [3] Regular time-efficient VLSI architecture for multiplication modulo 2n+1
    Zhou, Haohua
    Li, Zhiyong
    Xie, Wenlu
    Zhang, Qianling
    Pan Tao Ti Hsueh Pao/Chinese Journal of Semiconductors, 2000, 21 (10): : 1032 - 1037
  • [4] Efficient VLSI implementation of modulo (2n ± 1) addition and multiplication
    Zimmermann, Reto
    Proceedings - Symposium on Computer Arithmetic, 1999, : 158 - 167
  • [5] Algorithm for modulo (2n+1) multiplication
    Sousa, LA
    ELECTRONICS LETTERS, 2003, 39 (09) : 752 - 754
  • [6] A universal architecture for designing efficient modulo 2n,+1 multipliers
    Sousa, L
    Chaves, R
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-REGULAR PAPERS, 2005, 52 (06) : 1166 - 1178
  • [7] Efficient modulo 2N+1 tree multipliers for diminished-1 operands
    Efstathiou, C
    Vergos, HT
    Dimitrakopoulos, G
    Nikolos, D
    ICECS 2003: PROCEEDINGS OF THE 2003 10TH IEEE INTERNATIONAL CONFERENCE ON ELECTRONICS, CIRCUITS AND SYSTEMS, VOLS 1-3, 2003, : 200 - 203
  • [8] On the modulo 2n+1 multiplication for diminished-1 operands
    Efstathiou, C.
    Voyiatzis, I.
    Sklavos, N.
    SCS: 2008 2ND INTERNATIONAL CONFERENCE ON SIGNALS, CIRCUITS AND SYSTEMS, 2008, : 228 - +
  • [9] Modulo 2n+1 Addition and Multiplication for Redundant Operands
    Tsoumanis, Kostas
    Efstathiou, Constantinos
    Pekmestzi, Kiamal
    2014 9TH INTERNATIONAL DESIGN & TEST SYMPOSIUM (IDT), 2014, : 205 - 210
  • [10] REGULAR VLSI ARCHITECTURES FOR MULTIPLICATION MODULO (2N + 1)
    CURIGER, AV
    BONNENBERG, H
    KAESLIN, H
    IEEE JOURNAL OF SOLID-STATE CIRCUITS, 1991, 26 (07) : 990 - 994