Aqueous Binder for Nanostructured Carbon Anode Materials for Li-Ion Batteries

被引:10
|
作者
Lis, Marcelina [1 ]
Chudzik, Krystian [1 ]
Bakierska, Monika [1 ]
Swietoslawski, Michal [1 ]
Gajewska, Marta [2 ]
Rutkowska, Malgorzata [1 ]
Molenda, Marcin [1 ]
机构
[1] Jagiellonian Univ, Fac Chem, PL-30387 Krakow, Poland
[2] AGH Univ Sci & Technol, Acad Ctr Mat & Nanotechnol, PL-30059 Krakow, Poland
关键词
POLYACRYLIC-ACID; HIGH-ENERGY; ELECTRODES; PARTICLES; SYSTEM;
D O I
10.1149/2.0591903jes
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Water soluble hydrophilic polymer poly-N-vinylformamide (PNVF) has been adopted as new binder for selected anode materials based on nanostructured carbon aerogels (CAGs) derived from different types of starch (rice, maize, potato) as well as for graphite as a reference. The results suggest that PNVF can be promising, fluorine free and volatile organic compounds (VOC) free binder for some anode materials especially when taking into consideration its beneficial properties, cost reduction as well as environmental friendliness. PNVF enhances chemical and physical interactions with tested carbons improving adhesion strength of the created composites and thus capacity retention of the formed electrodes during extensive cycling under high current load. Herein, we show that although the binder is only a small part of the entire electrode composition, it has a huge impact on the properties and efficiency of lithium-ion battery. Thereby, every anode material require properly selected binder for the suitable operation and performance of the cell. (C) The Author(s) 2019. Published by ECS.
引用
收藏
页码:A5354 / A5361
页数:8
相关论文
共 50 条
  • [21] Electrospinning ZnO/carbon nanofiber as binder-free and selfsupported anode for Li-ion batteries
    Ning, Hui
    Xie, Hui
    Zhao, Qingshan
    Liu, Jialiang
    Tian, Wei
    Wang, Yixian
    Wu, Mingbo
    JOURNAL OF ALLOYS AND COMPOUNDS, 2017, 722 : 716 - 720
  • [22] Nanostructured conversion materials for next generation Li and Li-ion batteries
    Yushin, Gleb
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2018, 256
  • [23] Lithium Silicates in Anode Materials for Li-Ion and Li Metal Batteries
    Su, Yu-Sheng
    Hsiao, Kuang-Che
    Sireesha, Pedaballi
    Huang, Jen-Yen
    BATTERIES-BASEL, 2022, 8 (01):
  • [24] Nanostructured silicon/porous carbon spherical composite as a high capacity anode for Li-ion batteries
    Shao, Dan
    Tang, Daoping
    Mai, Yongjin
    Zhang, Lingzhi
    JOURNAL OF MATERIALS CHEMISTRY A, 2013, 1 (47) : 15068 - 15075
  • [25] Ultrafast anode for high voltage aqueous Li-ion batteries
    Levi, M. D.
    Shilina, Yu.
    Salitra, G.
    Aurbach, D.
    Guyot, E.
    Seghir, S.
    Lecuire, J. M.
    Boulanger, C.
    JOURNAL OF SOLID STATE ELECTROCHEMISTRY, 2012, 16 (11) : 3443 - 3448
  • [26] Ultrafast anode for high voltage aqueous Li-ion batteries
    M. D. Levi
    Yu. Shilina
    G. Salitra
    D. Aurbach
    E. Guyot
    S. Seghir
    J. M. Lecuire
    C. Boulanger
    Journal of Solid State Electrochemistry, 2012, 16 : 3443 - 3448
  • [27] Nanostructured organic and inorganic materials for Li-ion batteries: A review
    Shetti, Nagaraj P.
    Dias, Savio
    Reddy, Kakarla Raghava
    MATERIALS SCIENCE IN SEMICONDUCTOR PROCESSING, 2019, 104
  • [28] Effect of silicon/carbon composite on properties of Graphite anode materials in Li-ion batteries
    Xu, Wei
    Ni, Chengyuan
    Xia, Chengdong
    Piao, Zhongyu
    Liu, Wenping
    INTERNATIONAL JOURNAL OF ELECTROCHEMICAL SCIENCE, 2022, 17 (11):
  • [29] Al-based anode materials for Li-ion batteries
    Lindsay, MJ
    Wang, GX
    Liu, HK
    JOURNAL OF POWER SOURCES, 2003, 119 : 84 - 87
  • [30] A concise review on the advancement of anode materials for Li-ion batteries
    Saritha, D.
    MATERIALS TODAY-PROCEEDINGS, 2019, 19 : 726 - 730