A comparison study between electrospun polycaprolactone and piezoelectric poly(3-hydroxybutyrate-co-3-hydroxyvalerate) scaffolds for bone tissue engineering

被引:120
作者
Gorodzha, Svetlana N. [1 ]
Muslimov, Albert R. [2 ]
Syromotina, Dina S. [1 ,3 ]
Timin, Alexander S. [3 ]
Tcvetkov, Nikolai Y. [2 ]
Lepik, Kirill V. [2 ]
Petrova, Aleksandra V. [4 ,7 ]
Surmeneva, Maria A. [1 ]
Gorin, Dmitry A. [3 ,5 ]
Sukhorukov, Gleb B. [3 ,6 ]
Surmenev, Roman A. [1 ]
机构
[1] Natl Res Tomsk Polytech Univ, Expt Phys Dept, Lenin Ave 30, Tomsk 634050, Russia
[2] First IP Pavlov State Med Univ St Petersburg, Lev Tolstoy Str 6-8, St Petersburg 197022, Russia
[3] Natl Res Tomsk Polytech Univ, RASA Ctr Tomsk, Lenin Ave 30, Tomsk 634050, Russia
[4] Peter Great St Petersburg Polytech Univ, Dept Mol Biol, Polytechnicheskaya 29, St Petersburg 195251, Russia
[5] Saratov NG Chernyshevskii State Univ, Saratov, Russia
[6] Queen Mary Univ London, Sch Engn & Mat Sci, Mile End Rd, London E1 4NS, England
[7] Res Inst Influenza, Popova Str 15-17, St Petersburg 197376, Russia
关键词
Polymer scaffolds; Nanoparticles; Cell adhesion; Mineralization; Electrospinning; OSTEOGENIC DIFFERENTIATION; CELL-ADHESION; STEM-CELLS; IN-VITRO; HYDROXYAPATITE; NANOSCALE; PROLIFERATION; FABRICATION; CARTILAGE;
D O I
10.1016/j.colsurfb.2017.09.004
中图分类号
Q6 [生物物理学];
学科分类号
071011 ;
摘要
In this study, bone scaffolds composed of polycaprolactone (PCL), piezoelectric poly(3-hydroxybutyrateco-3-hydroxyvalerate) (PHBV) and a combination of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) and silicate containing hydroxyapatite (PHBV-SiHA) were successfully fabricated by a conventional electrospinning process. The morphological, chemical, wetting and biological properties of the scaffolds were examined. All fabricated scaffolds are composed of randomly oriented fibres with diameters from 800 nm to 12 pm. Fibre size increased with the addition of SiHA to PHBV scaffolds. Moreover, fibre surface roughness in the case of hybrid scaffolds was also increased. XRD, FTIR and Raman spectroscopy were used to analyse the chemical composition of the scaffolds, and contact angle measurements were performed to reveal the wetting behaviour of the synthesized materials. To determine the influence of the piezoelectric nature of PHBV in combination with SiHA nanoparticles on cell attachment and proliferation, PCL (non piezoelectric), pure PHBV, and PHBV-SiHA scaffolds were seeded with human mesenchymal stem cells (hMSCs). In vitro study on hMSC adhesion, viability, spreading and osteogenic differentiation showed that the PHBV-SiHA scaffolds had the largest adhesion and differentiation abilities compared with other scaffolds. Moreover, the piezoelectric PHBV scaffolds have demonstrated better calcium deposition potential compared with non-piezoelectric PCL. The results of the study revealed pronounced advantages of hybrid PHBV-SiHA scaffolds to be used in bone tissue engineering. (C) 2017 Elsevier B.V. All rights reserved.
引用
收藏
页码:48 / 59
页数:12
相关论文
共 48 条
[1]   Use of electrospinning technique for biomedical applications [J].
Agarwal, Seema ;
Wendorff, Joachim H. ;
Greiner, Andreas .
POLYMER, 2008, 49 (26) :5603-5621
[2]  
[Anonymous], J NANOMATER
[3]   A calcium-induced signaling cascade leading to osteogenic differentiation of human bone marrow-derived mesenchymal stromal cells [J].
Barradas, Ana M. C. ;
Fernandes, Hugo A. M. ;
Groen, Nathalie ;
Chai, Yoke Chin ;
Schrooten, Jan ;
van de Peppel, Jeroen ;
van Leeuwen, Johannes P. T. M. ;
van Blitterswijk, Clemens A. ;
de Boer, Jan .
BIOMATERIALS, 2012, 33 (11) :3205-3215
[4]   Cell Microenvironment Engineering and Monitoring for Tissue Engineering and Regenerative Medicine: The Recent Advances [J].
Barthes, Julien ;
Oezcelik, Hayriye ;
Hindie, Mathilde ;
Ndreu-Halili, Albana ;
Hasan, Anwarul ;
Vrana, Nihal Engin .
BIOMED RESEARCH INTERNATIONAL, 2014, 2014
[5]   Extracellular matrix scaffolds for cartilage and bone regeneration [J].
Benders, Kim E. M. ;
van Weeren, P. Rene ;
Badylak, Stephen F. ;
Saris, Daniel B. F. ;
Dhert, Wouter J. A. ;
Malda, Jos .
TRENDS IN BIOTECHNOLOGY, 2013, 31 (03) :169-176
[6]  
Bitencourt J., 2012, SCI WORLD J
[7]   Mechanochemical Synthesis of SiO44--Substituted Hydroxyapatite, Part II - Reaction Mechanism, Structure, and Substitution Limit [J].
Bulina, Natalya V. ;
Chaikina, Marina V. ;
Andreev, Andrey S. ;
Lapina, Olga B. ;
Ishchenko, Arcady V. ;
Prosanov, Igor Yu. ;
Gerasimov, Konstantin B. ;
Solovyov, Leonid A. .
EUROPEAN JOURNAL OF INORGANIC CHEMISTRY, 2014, (28) :4810-4825
[8]   Adhesion of mesenchymal stem cells to polymer scaffolds occurs via distinct ECM ligands and controls their osteogenic differentiation [J].
Chastain, Sara R. ;
Kundu, Anup K. ;
Dhar, Sanjay ;
Calvert, Jay W. ;
Putnam, Andrew J. .
JOURNAL OF BIOMEDICAL MATERIALS RESEARCH PART A, 2006, 78A (01) :73-85
[9]   Preparation and characterization of composite nanofibers of polycaprolactone and nanohydroxyapatite for osteogenic differentiation of mesenchymal stem cells [J].
Chen, Jyh-Ping ;
Chang, Yin-Shin .
COLLOIDS AND SURFACES B-BIOINTERFACES, 2011, 86 (01) :169-175
[10]   The control of human mesenchymal cell differentiation using nanoscale symmetry and disorder [J].
Dalby, Matthew J. ;
Gadegaard, Nikolaj ;
Tare, Rahul ;
Andar, Abhay ;
Riehle, Mathis O. ;
Herzyk, Pawel ;
Wilkinson, Chris D. W. ;
Oreffo, Richard O. C. .
NATURE MATERIALS, 2007, 6 (12) :997-1003