Tunable Charge Transport Using Supramolecular Self-Assembly of Nanostructured Crystalline Block Copolymers

被引:39
|
作者
Huettner, Sven [1 ,2 ]
Sommer, Michael [1 ]
Hodgkiss, Justin [2 ]
Kohn, Peter [3 ]
Thurn-Albrecht, Thomas [3 ]
Friend, Richard H. [2 ]
Steiner, Ullrich [2 ]
Thelakkat, Mukundan [1 ]
机构
[1] Univ Bayreuth, D-95440 Bayreuth, Germany
[2] Univ Cambridge, Cavendish Lab, Cambridge CB2 1TN, England
[3] Univ Halle Wittenberg, D-4010 Halle, Germany
基金
英国工程与自然科学研究理事会;
关键词
charge transport; OFET; donor-acceptor block copolymer; self-assembly; ambipolar; conjugated polymer; AMBIPOLAR TRANSPORT; MORPHOLOGY; TRANSISTORS; MOBILITY;
D O I
10.1021/nn200647d
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Electronically functionalized block copolymers, combining covalently linked p-type and n-type blocks, show switching behavior of charge transport in organic field effect transistors (OFETs). The electronically active subunits self-assemble into continuous microdomains in a nanoscale regime, thereby forming percolation channels for holes or electrons or both depending on the composition and processing conditions. Here, we establish a charge transport morphology relation for donor acceptor block copolymers with two crystalline blocks. The n-type and p-type blocks self-assemble into two-dimensional lattices of pi-pi stacks and main chain polymer lamellae, respectively, over El broad composition range. Controlling the crystallization preferences of the two blocks by thermal annealing allows controlling the OFET polarity. Depending on the block ratio, the charge transport can be tuned from p-type to n-type or p-type to ambipolar, respectively. The impact of nanostructured phase separation Is further delineated by X-ray diffraction, time-resolved spectroscopy, and scanning electron microscopy studies.
引用
收藏
页码:3506 / 3515
页数:10
相关论文
共 50 条
  • [21] Nanostructured Materials via the Pendant Self-Assembly of Amphiphilic Crystalline Random Copolymers
    Hattori, Gold
    Takenaka, Mikihito
    Sawamoto, Mitsuo
    Terashima, Takaya
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2018, 140 (27) : 8376 - 8379
  • [22] Supramolecular self-assembly and opto-electronic properties of semiconducting block copolymers
    de Boer, B
    Stalmach, U
    van Hutten, PF
    Melzer, C
    Krasnikov, VV
    Hadziioannou, G
    POLYMER, 2001, 42 (21) : 9097 - 9109
  • [23] Phase transformation and self-assembly behavior of supramolecular rod comb block copolymers
    Lee, Yi-Huan
    Chang, Chun-Jie
    Yang, Yi-Lung
    Chiang, Chi-Ju
    Lee, Yu-Ping
    Shen, Ching
    Tsai, Kang-Ting
    Chen, Yi-Fan
    Dai, Chi-An
    POLYMER, 2014, 55 (10) : 2481 - 2490
  • [24] Templating conducting polymers via self-assembly of block copolymers and supramolecular recognition
    McCullough, Lynne A.
    Dufour, Bruno
    Tang, Chuanbing
    Zhang, Rui
    Kowalewski, Tomasz
    Matyjaszewski, Krzysztof
    MACROMOLECULES, 2007, 40 (22) : 7745 - 7747
  • [25] Nanostructured colloidal particles by confined self-assembly of block copolymers in evaporative droplets
    Kim, Minsoo P.
    Yi, Gi-Ra
    FRONTIERS IN MATERIALS, 2015, 2
  • [26] Barnacle repellent nanostructured surfaces formed by the self-assembly of amphiphilic block copolymers
    Tan, Beng H.
    Hussain, Hazrat
    Chaw, Kuan C.
    Dickinson, Gary H.
    Gudipati, Chakra S.
    Birch, William R.
    Teo, Serena L. M.
    He, Chaobin
    Liu, Ye
    Davis, Thomas P.
    POLYMER CHEMISTRY, 2010, 1 (03) : 276 - 279
  • [27] Directed self-assembly of block copolymers
    Takenaka, Mikihito
    Hasegawa, Hirokazu
    CURRENT OPINION IN CHEMICAL ENGINEERING, 2013, 2 (01) : 88 - 94
  • [28] Directing the self-assembly of block copolymers
    Darling, S. B.
    PROGRESS IN POLYMER SCIENCE, 2007, 32 (10) : 1152 - 1204
  • [29] Discrete Block Copolymers for Self-Assembly
    Zhang, Wei
    ACS CENTRAL SCIENCE, 2020, 6 (08) : 1278 - 1280
  • [30] Directed Self-Assembly of Block Copolymers
    Wang, Qianqian
    Wu, Liping
    Wang, Jing
    Wang, Liyuan
    PROGRESS IN CHEMISTRY, 2017, 29 (04) : 435 - 442