A Note on the Structure of Certain Real Quadratic Number Fields

被引:4
作者
Ozer, Ozen [1 ]
机构
[1] Kirklareli Univ, Fac Sci & Arts, Dept Math, TR-39000 Kirklareli, Turkey
来源
IRANIAN JOURNAL OF SCIENCE AND TECHNOLOGY TRANSACTION A-SCIENCE | 2017年 / 41卷 / A3期
关键词
Continued fraction; Fundamental unit; Class number and quadratic forms; FUNDAMENTAL UNITS; EXPLICIT REPRESENTATION;
D O I
10.1007/s40995-017-0292-z
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The aim of this paper is to determine the general forms of the continued fraction expansions of the quadratic irrational number w(d) which is integral basis element of Z [1+root d/2] also determine t(d); u(d) which are the coefficients of fundamental units epsilon(d) = (t(d) + u(d)root d)/2 > of the real quadratic number fields Q(root d) using a new explicit formula. Fundamental units are calculated with this algorithm in an easy way for the period k(d) which is equal to 9 in the continued fraction expansion of w(d) for such real quadratic fields where d equivalent to 1(mod4) is a positive square free integer. Moreover, some results are given on Yokoi's invariant value n(d) which is defined in the terms of coefficients of fundamental unit and the class number h(d) of the real quadratic number field Q(root d) as well as reduced indefinite quadratic forms f(d).
引用
收藏
页码:759 / 769
页数:11
相关论文
共 12 条
[1]   ON THE FUNDAMENTAL UNITS AND THE CLASS-NUMBERS OF REAL QUADRATIC FIELDS [J].
AZUHATA, T .
NAGOYA MATHEMATICAL JOURNAL, 1984, 95 (SEP) :125-135
[2]  
Cohen H., 1996, A Course in Computational Algebraic Number Theory
[3]  
Jones BW, 1961, ARITMETIC THEORY QUA
[4]  
Mollin R.A., 1996, QUADRATICS
[5]  
Mollin R.A., 2011, Algebraic number theory. Discrete Math. Appl. (Boca Raton), V2nd
[6]   ON A DETERMINATION OF REAL QUADRATIC FIELDS OF CLASS NUMBER ONE AND RELATED CONTINUED-FRACTION PERIOD LENGTH LESS THAN 25 [J].
MOLLIN, RA ;
WILLIAMS, HC .
PROCEEDINGS OF THE JAPAN ACADEMY SERIES A-MATHEMATICAL SCIENCES, 1991, 67 (01) :20-25
[7]   ON REAL QUADRATIC FIELDS OF CLASS NUMBER-2 [J].
MOLLIN, RA ;
WILLIAMS, HC .
MATHEMATICS OF COMPUTATION, 1992, 59 (200) :625-632
[8]  
Özer Ö, 2015, EUR J PURE APPL MATH, V8, P343
[9]   EXPLICIT REPRESENTATION OF FUNDAMENTAL UNITS OF SOME QUADRATIC FIELDS [J].
TOMITA, K .
PROCEEDINGS OF THE JAPAN ACADEMY SERIES A-MATHEMATICAL SCIENCES, 1995, 71 (02) :41-43
[10]   Explicit representation of fundamental units of some real quadratic fields .2. [J].
Tomita, K .
JOURNAL OF NUMBER THEORY, 1997, 63 (02) :275-285