Cartesian decomposition and numerical radius inequalities

被引:76
作者
Kittaneh, Fuad [1 ]
Moslehian, Mohammad Sal [2 ]
Yamazaki, Takeaki [3 ]
机构
[1] Univ Jordan, Dept Math, Amman, Jordan
[2] Ferdowsi Univ Mashhad, Dept Pure Math, Ctr Excellence Anal Algebra Struct, Mashhad 91775, Iran
[3] Toyo Univ, Dept Elect Elect & Comp Engn, Kawagoe, Saitama 8508585, Japan
关键词
Numerical radius; Positive operator; Cartesian decomposition; Triangle inequality; HILBERT-SPACE OPERATORS; EQUALITY; NORM;
D O I
10.1016/j.laa.2014.12.016
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We show that if T = H + iK is the Cartesian decomposition of T is an element of B(H), then for alpha, beta is an element of R, sup(alpha 2+beta 2=1) parallel to alpha H + beta K parallel to = w(T). We then apply it to prove that if A, B, X is an element of B(H) and 0 <= mI <= X, then m parallel to Re(A) - Re(B)parallel to <= w (Re(A)X - XRe(B)) <= 1/2sup (theta is an element of R)parallel to(AX - XB) + e(i theta) (XA - BX)parallel to <=parallel to AX - XB parallel to + parallel to XA - BX parallel to/2, where Re(T) denotes the real part of an operator T. A refinement of the triangle inequality is also shown. (C) 2015 Elsevier Inc. All rights reserved.
引用
收藏
页码:46 / 53
页数:8
相关论文
共 13 条
[1]   A numerical radius inequality involving the generalized Aluthge transform [J].
Abu Omar, Amer ;
Kittaneh, Fuad .
STUDIA MATHEMATICA, 2013, 216 (01) :69-75
[2]   Inner derivations and norm equality [J].
Barraa, M ;
Boumazgour, M .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2002, 130 (02) :471-476
[3]   Cartesian decompositions and Schatten norms [J].
Bhatia, R ;
Kittaneh, F .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2000, 318 (1-3) :109-116
[4]  
BHATIA R, 1991, AEQUATIONES MATH, V41, P70, DOI DOI 10.1007/BF02227441
[5]   A SURVEY OF SOME RECENT INEQUALITIES FOR THE NORM AND NUMERICAL RADIUS OF OPERATORS IN HILBERT SPACES [J].
Dragomir, Sever S. .
BANACH JOURNAL OF MATHEMATICAL ANALYSIS, 2007, 1 (02) :154-175
[6]  
Dragomir SS, 2013, SPRINGERBRIEF MATH, P1, DOI 10.1007/978-3-319-01448-7
[7]   Numerical radius inequalities for Hilbert space operators. II [J].
El-Haddad, Mohammad ;
Kittaneh, Fuad .
STUDIA MATHEMATICA, 2007, 182 (02) :133-140
[8]  
Furuta T., 2001, Invitation to Linear Operators, P2
[9]  
Gustafson K.E., 1997, Universitext
[10]   Numerical Radius Inequalities for Certain 2 x 2 Operator Matrices [J].
Hirzallah, Omar ;
Kittaneh, Fuad ;
Shebrawi, Khalid .
INTEGRAL EQUATIONS AND OPERATOR THEORY, 2011, 71 (01) :129-147