Pseudo-unitarizable weight modules over generalized Weyl algebras

被引:3
作者
Hartwig, Jonas T. [1 ,2 ]
机构
[1] Chalmers, Dept Math, SE-41296 Gothenburg, Sweden
[2] Univ Gothenburg, SE-41296 Gothenburg, Sweden
关键词
DOWN-UP ALGEBRAS; REPRESENTATIONS;
D O I
10.1016/j.jpaa.2010.12.015
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We define a notion of pseudo-unitarizability for weight modules over a generalized Weyl algebra (of rank one, with commutative coefficient ring R), which is assumed to carry an involution of the form X* = Y, R* subset of R. We prove that a weight module V is pseudo-unitarizable iff it is isomorphic to its finitistic dual V(#). Using the classification of weight modules by Drozd, Guzner and Ovsienko, we obtain necessary and sufficient conditions for an indecomposable weight module to be isomorphic to its finitistic dual, and thus to be pseudo-unitarizable. Some examples are given, including U(g) (sl(2)) for q a root of unity. (C) 2010 Elsevier B.V. All rights reserved.
引用
收藏
页码:2352 / 2377
页数:26
相关论文
共 14 条
[1]   Indecomposable representations of generalized Weyl algebras [J].
Bavula, V ;
Bekkert, V .
COMMUNICATIONS IN ALGEBRA, 2000, 28 (11) :5067-5100
[2]   Simple modules of the Witten-Woronowicz algebra [J].
Bavula, V ;
van Oystaeyen, F .
JOURNAL OF ALGEBRA, 2004, 271 (02) :827-845
[3]  
Bavula V.V., 1993, St. Petersburg Math. J., V4, P71
[4]   Generalized Weyl algebras are tensor Krull minimal [J].
Bavula, VV ;
Lenagan, TH .
JOURNAL OF ALGEBRA, 2001, 239 (01) :93-111
[5]   Basic properties of generalized down-up algebras [J].
Cassidy, T ;
Shelton, B .
JOURNAL OF ALGEBRA, 2004, 279 (01) :402-421
[6]   Weight modules over generalized Weyl algebras [J].
Drozd, YA ;
Guzner, BL ;
Ovsienko, SA .
JOURNAL OF ALGEBRA, 1996, 184 (02) :491-504
[7]   NONCOMMUTATIVE DEFORMATIONS OF TYPE-A KLEINIAN SINGULARITIES [J].
HODGES, TJ .
JOURNAL OF ALGEBRA, 1993, 161 (02) :271-290
[8]   Down-up algebras and ambiskew polynomial rings [J].
Jordan, DA .
JOURNAL OF ALGEBRA, 2000, 228 (01) :311-346
[9]  
Kissin Edward., 1997, Representations on Krein Spaces and Derivatives of C*Algebras
[10]   *-Representations of twisted generalized Weyl constructions [J].
Mazorchuk, V ;
Turowska, L .
ALGEBRAS AND REPRESENTATION THEORY, 2002, 5 (02) :163-186