High energy switchable pulsed High-order Mode beams in a mode-locking Raman all-fiber laser with high efficiency

被引:12
作者
Huang, Maolin [1 ]
Wu, Jiadong [1 ,2 ,3 ]
Hong, Jiahao [1 ]
Lei, Hualei [1 ]
Zhao, Chujun [2 ,3 ]
Chen, Yu [1 ]
Fan, Dianyuan [1 ]
机构
[1] Shenzhen Univ, Inst Microscale Optoelect, Int Collaborat Lab 2D Mat Optoelect Sci & Technol, Shenzhen 518060, Peoples R China
[2] Hunan Univ, Sch Phys & Elect, Minist Educ, China Key Lab Micro Nano Optoelect Devices, Changsha 410082, Hunan, Peoples R China
[3] Hunan Univ, Sch Phys & Elect, Hunan Prov Key Lab Low Dimens Struct Phys & Devic, Changsha 410082, Hunan, Peoples R China
基金
中国国家自然科学基金;
关键词
ORBITAL ANGULAR-MOMENTUM; CYLINDRICAL VECTOR BEAMS; OPTICAL VORTEX; GENERATION;
D O I
10.1364/OE.442283
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
High energy pulsed High-order Mode (HOM) beams has great potential in materials processing and particle acceleration. We experimentally demonstrate a high energy mode-locking Raman all-fiber laser with switchable HOM state. A home-made fiber mode-selective coupler (MSC) is used as the mode converter with a wide bandwidth of 60 nm. By combining advantages of MSC and stimulated Raman scattering, 1.1 mu J pulsed HOM beams directly emitting from the all-fiber cavity can be achieved. After controlling the category and phase delay of vector modal superposition, different pulsed HOM beams including cylindrical vector beams (CVBs) (radial and angular) and optical vortex beams (OVBs) are reasonably obtained with high purity (all over 95%), as well as arbitrary switching. Furtherly, the slope efficiency of HOM beams in the mode-locking and continuous wave operations are as much as 20.3% and 31.8%, respectively. It may provide an effective way to achieve high energy pulsed HOM beams. (C) 2021 Optical Society of America under the terms of the OSA Open Access Publishing Agreement
引用
收藏
页码:40538 / 40546
页数:9
相关论文
共 42 条
  • [1] ANALYSIS OF STRIPE MULTILAYER WAVE-GUIDES WITH EFFECTIVE INDEX AND FINITE-ELEMENT METHODS
    AN, PZ
    CVETKOVIC, SR
    PUNJANI, M
    [J]. IEEE JOURNAL OF QUANTUM ELECTRONICS, 1992, 28 (03) : 573 - 579
  • [2] A Tapered Chalcogenide Microstructured Optical Fiber for Mid-IR Parabolic Pulse Generation: Design and Performance Study
    Barh, Ajanta
    Ghosh, S.
    Varshney, Ravi K.
    Pal, Bishnu P.
    [J]. IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, 2014, 20 (05)
  • [3] HELICAL-WAVE-FRONT LASER-BEAMS PRODUCED WITH A SPIRAL PHASEPLATE
    BEIJERSBERGEN, MW
    COERWINKEL, RPC
    KRISTENSEN, M
    WOERDMAN, JP
    [J]. OPTICS COMMUNICATIONS, 1994, 112 (5-6) : 321 - 327
  • [4] Mode-locked all-fiber laser generating optical vortex pulses with tunable repetition rate
    Chen, R. S.
    Sun, F. L.
    Yao, J. N.
    Wang, J. H.
    Ming, H.
    Wang, A. T.
    Zhan, Q. W.
    [J]. APPLIED PHYSICS LETTERS, 2018, 112 (26)
  • [5] Modulated optical vortices
    Curtis, JE
    Grier, DG
    [J]. OPTICS LETTERS, 2003, 28 (11) : 872 - 874
  • [6] Determination of topological charges of polychromatic optical vortices
    Denisenko, Vladimir
    Shvedov, Vladlen
    Desyatnikov, Anton S.
    Neshev, Dragomir N.
    Krolikowski, Wieslaw
    Volyar, Alexander
    Soskin, Marat
    Kivshar, Yuri S.
    [J]. OPTICS EXPRESS, 2009, 17 (26): : 23374 - 23379
  • [7] Advances in Raman fibers
    Dianov, EM
    [J]. JOURNAL OF LIGHTWAVE TECHNOLOGY, 2002, 20 (08) : 1457 - 1462
  • [8] Sharper focus for a radially polarized light beam
    Dorn, R
    Quabis, S
    Leuchs, G
    [J]. PHYSICAL REVIEW LETTERS, 2003, 91 (23)
  • [9] Grelu P, 2012, NAT PHOTONICS, V6, P84, DOI [10.1038/nphoton.2011.345, 10.1038/NPHOTON.2011.345]
  • [10] Structuring materials with nanosecond laser pulses
    Hendow, Sami T.
    Shakir, Sami A.
    [J]. OPTICS EXPRESS, 2010, 18 (10): : 10188 - 10199