Symmetry of odd solutions to equations with fractional Laplacian

被引:0
作者
Djitte, Sidy M. [1 ,2 ]
Jarohs, Sven [1 ]
机构
[1] Goethe Univ Frankfurt AM, Inst Math, Robert Mayer Str 10, D-60325 Frankfurt, Germany
[2] African Inst Math Sci Senegal AIMS Senegal, KM 2,Route Joal,BP 14 18, Mbour, Senegal
关键词
Symmetries; Nonlocal operators; Sign-changing solutions; MOUNTAIN PASS SOLUTIONS;
D O I
10.1007/s41808-022-00146-z
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We present a symmetry result to solutions of equations involving the fractional Laplacian in a domain with at least two perpendicular symmetries. We show that if the solution is continuous, bounded, and odd in one direction such that it has a fixed sign on one side, then it will be symmetric in the perpendicular direction. Moreover, the solution will be monotonic in the part where it is of fixed sign. In addition, we present also a class of examples in which our result can be applied.
引用
收藏
页码:209 / 230
页数:22
相关论文
共 25 条
  • [1] Ambrosio V., 2021, NONLINEAR FRACTIONAL
  • [2] Ambrosio V, 2018, ADV DIFFERENTIAL EQU, V23, P455
  • [3] Comparison results and steady states for the Fujita equation with fractional Laplacian
    Birkner, M
    López-Mimbela, JA
    Wakolbinger, A
    [J]. ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2005, 22 (01): : 83 - 97
  • [4] The second eigenvalue of the fractional p-Laplacian
    Brasco, Lorenzo
    Parini, Enea
    [J]. ADVANCES IN CALCULUS OF VARIATIONS, 2016, 9 (04) : 323 - 355
  • [5] Bucur C, 2016, LECT NOTES UNIONE MA, V20, P1
  • [6] Positive solutions of nonlinear problems involving the square root of the Laplacian
    Cabre, Xavier
    Tan, Jinggang
    [J]. ADVANCES IN MATHEMATICS, 2010, 224 (05) : 2052 - 2093
  • [7] Hitchhiker's guide to the fractional Sobolev spaces
    Di Nezza, Eleonora
    Palatucci, Giampiero
    Valdinoci, Enrico
    [J]. BULLETIN DES SCIENCES MATHEMATIQUES, 2012, 136 (05): : 521 - 573
  • [8] Eigenvalues of the fractional Laplace operator in the unit ball
    Dyda, Bartlomiej
    Kuznetsov, Alexey
    Kwasnicki, Mateusz
    [J]. JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2017, 95 : 500 - 518
  • [9] Morse index versus radial symmetry for fractional Dirichlet problems
    Fall, Mouhamed Moustapha
    Feulefack, Pierre Aime
    Temgoua, Remi Yvant
    Weth, Tobias
    [J]. ADVANCES IN MATHEMATICS, 2021, 384
  • [10] OVERDETERMINED PROBLEMS WITH FRACTIONAL LAPLACIAN
    Fall, Mouhamed Moustapha
    Jarohs, Sven
    [J]. ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS, 2015, 21 (04) : 924 - 938