Competition for delivery of profilin?actin to barbed ends limits the rate of formin-mediated actin filament elongation

被引:17
作者
Zweifel, Mark E. [1 ]
Courtemanche, Naomi [1 ]
机构
[1] Univ Minnesota, Dept Genet Cell Biol & Dev, 6-130 MCB,420 Washington Ave SE, Minneapolis, MN 55455 USA
基金
美国国家卫生研究院;
关键词
formin; actin; profilin; fluorescence; microscopy; polyproline tract; FH1; DOMAIN; NUCLEATION; POLYMERIZATION; MECHANISM; PROLINE; MODEL; DROSOPHILA; PROTEINS; MONOMERS; COMPLEX;
D O I
10.1074/jbc.RA119.012000
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Formins direct the elongation of unbranched actin filaments by binding their barbed ends and processively stepping onto incoming actin monomers to incorporate them into the filament. Binding of profilin to actin monomers creates profilin?actin complexes, which then bind polyproline tracts located in formin homology 1 (FH1) domains. Diffusion of these natively disordered domains enables direct delivery of profilin?actin to the barbed end, speeding the rate of filament elongation. In this study, we investigated the mechanism of coordinated actin delivery from the multiple polyproline tracts in formin FH1 domains. We found that each polyproline tract can efficiently mediate polymerization, but that all tracts do not generate the same rate of elongation. In WT FH1 domains, the multiple polyproline tracts compete to deliver profilin?actin to the barbed end. This competition ultimately limits the rate of formin-mediated elongation. We propose that intrinsic properties of the filament-binding FH2 domain tune the efficiency of FH1-mediated elongation by directly regulating the rate of monomer incorporation at the barbed end. A strong correlation between competitive FH1-mediated profilin?actin delivery and FH2-regulated gating of the barbed end effectively limits the elongation rate, thereby obviating the need for evolutionary optimization of FH1 domain sequences.
引用
收藏
页码:4513 / 4525
页数:13
相关论文
共 51 条
[41]   Dissection of two parallel pathways for formin-mediated actin filament elongation [J].
Sherer, Laura A. ;
Zweifel, Mark E. ;
Courtemanche, Naomi .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2018, 293 (46) :17917-17928
[42]   The role of TOG domains in microtubule plus end dynamics [J].
Slep, Kevin C. .
BIOCHEMICAL SOCIETY TRANSACTIONS, 2009, 37 :1002-1006
[43]  
SPUDICH JA, 1971, J BIOL CHEM, V246, P4866
[44]   Model of formin-associated actin filament elongation [J].
Vavylonis, D ;
Kovar, DR ;
O'Shaughnessy, B ;
Pollard, TD .
MOLECULAR CELL, 2006, 21 (04) :455-466
[45]   Interactions of Acanthamoeba profilin with actin and nucleotides bound to actin [J].
Vinson, VK ;
De la Cruz, EM ;
Higgs, HN ;
Pollard, TD .
BIOCHEMISTRY, 1998, 37 (31) :10871-10880
[46]   Structure and function of the interacting domains of Spire and Fmn-family formins [J].
Vizcarra, Christina L. ;
Kreutz, Barry ;
Rodal, Avital A. ;
Toms, Angela V. ;
Lu, Jun ;
Zheng, Wei ;
Quinlan, Margot E. ;
Eck, Michael J. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2011, 108 (29) :11884-11889
[47]   Ena/VASP Enabled is a highly processive actin polymerase tailored to self-assemble parallel-bundled F-actin networks with Fascin [J].
Winkelman, Jonathan D. ;
Bilancia, Colleen G. ;
Peifer, Mark ;
Kovar, David R. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2014, 111 (11) :4121-4126
[48]   Crystal structures of a formin homology-2 domain reveal a tethered dimer architecture [J].
Xu, YW ;
Moseley, JB ;
Sagot, I ;
Poy, F ;
Pellman, D ;
Goode, BL ;
Eck, MJ .
CELL, 2004, 116 (05) :711-723
[49]   A cooperative jack model of random coil-to-elongation transition of the FH1 domain by profilin binding explains formin motor behavior in actin polymerization [J].
Zhao, Chen ;
Liu, Chengcheng ;
Hogue, Christopher W. V. ;
Low, Boon Chuan .
FEBS LETTERS, 2014, 588 (14) :2288-2293
[50]   Formin leaky cap allows elongation in the presence of tight capping proteins [J].
Zigmond, SH ;
Evangelista, M ;
Boone, C ;
Yang, CS ;
Dar, AC ;
Sicheri, F ;
Forkey, J ;
Pring, M .
CURRENT BIOLOGY, 2003, 13 (20) :1820-1823