Optomechanical cooling in the non-Markovian regime

被引:51
作者
Zhang, Wen-Zhao [1 ]
Cheng, Jiong [1 ]
Li, Wen-Dong [2 ]
Zhou, Ling [1 ]
机构
[1] Dalian Univ Technol, Sch Phys & Optoelect Technol, Dalian 116024, Peoples R China
[2] Ocean Univ China, Dept Phys, Qingdao 266100, Peoples R China
关键词
Optomechanics;
D O I
10.1103/PhysRevA.93.063853
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We propose a scheme in which the cooling of a mechanical resonator is achieved by exposing the optomechanical system to a non-Markovian environment. Because of the backflow from the non-Markovian environment, the phonon number can go beyond the conventional cooling limit in a Markovian environment. Utilizing the spectrum density obtained in a recent experiment [S. Groblacher et al., Nat. Commun. 6, 7606 (2015)], we show that the cooling process is highly effective in a non-Markovian environment. Analysis of the cooling mechanism in a non-Markovian environment reveals that the non-Markovian memory effect is instrumental in the cooling process.
引用
收藏
页数:8
相关论文
共 33 条
[1]   Observation of a kilogram-scale oscillator near its quantum ground state [J].
Abbott, B. ;
Abbott, R. ;
Adhikari, R. ;
Ajith, P. ;
Allen, B. ;
Allen, G. ;
Amin, R. ;
Anderson, S. B. ;
Anderson, W. G. ;
Arain, M. A. ;
Araya, M. ;
Armandula, H. ;
Armor, P. ;
Aso, Y. ;
Aston, S. ;
Aufmuth, P. ;
Aulbert, C. ;
Babak, S. ;
Ballmer, S. ;
Bantilan, H. ;
Barish, B. C. ;
Barker, C. ;
Barker, D. ;
Barr, B. ;
Barriga, P. ;
Barton, M. A. ;
Bastarrika, M. ;
Bayer, K. ;
Betzwieser, J. ;
Beyersdorf, P. T. ;
Bilenko, I. A. ;
Billingsley, G. ;
Biswas, R. ;
Black, E. ;
Blackburn, K. ;
Blackburn, L. ;
Blair, D. ;
Bland, B. ;
Bodiya, T. P. ;
Bogue, L. ;
Bork, R. ;
Boschi, V. ;
Bose, S. ;
Brady, P. R. ;
Braginsky, V. B. ;
Brau, J. E. ;
Brinkmann, M. ;
Brooks, A. ;
Brown, D. A. ;
Brunet, G. .
NEW JOURNAL OF PHYSICS, 2009, 11
[2]  
[Anonymous], 2000, Quantum Noise
[3]   Cavity optomechanics [J].
Aspelmeyer, Markus ;
Kippenberg, Tobias J. ;
Marquardt, Florian .
REVIEWS OF MODERN PHYSICS, 2014, 86 (04) :1391-1452
[4]   Optical detection of radio waves through a nanomechanical transducer [J].
Bagci, T. ;
Simonsen, A. ;
Schmid, S. ;
Villanueva, L. G. ;
Zeuthen, E. ;
Appel, J. ;
Taylor, J. M. ;
Sorensen, A. ;
Usami, K. ;
Schliesser, A. ;
Polzik, E. S. .
NATURE, 2014, 507 (7490) :81-85
[5]   Microwave Quantum Illumination [J].
Barzanjeh, Shabir ;
Guha, Saikat ;
Weedbrook, Christian ;
Vitali, David ;
Shapiro, Jeffrey H. ;
Pirandola, Stefano .
PHYSICAL REVIEW LETTERS, 2015, 114 (08)
[6]   Optomechanical laser cooling with mechanical modulations [J].
Bienert, Marc ;
Barberis-Blostein, Pablo .
PHYSICAL REVIEW A, 2015, 91 (02)
[7]   Non-Markovian master equation for a damped oscillator with time-varying parameters [J].
Chang, K. W. ;
Law, C. K. .
PHYSICAL REVIEW A, 2010, 81 (05)
[8]   Preservation Macroscopic Entanglement of Optomechanical Systems in non-Markovian Environment [J].
Cheng, Jiong ;
Zhang, Wen-Zhao ;
Zhou, Ling ;
Zhang, Weiping .
SCIENTIFIC REPORTS, 2016, 6
[9]   Robust fermionic-mode entanglement of a nanoelectronic system in non-Markovian environments [J].
Cheng, Jiong ;
Zhang, Wen-Zhao ;
Han, Yan ;
Zhou, Ling .
PHYSICAL REVIEW A, 2015, 91 (02)
[10]   Phonon Cooling by an Optomechanical Heat Pump [J].
Dong, Ying ;
Bariani, F. ;
Meystre, P. .
PHYSICAL REVIEW LETTERS, 2015, 115 (22)