Confined Water Vapor in ZIF-8 Nanopores

被引:10
作者
Zhang, Li [1 ]
Zheng, Bin [1 ]
Gao, Ying [1 ]
Wang, Lianli [1 ]
Wang, Jinlei [1 ]
Duan, Xiaobo [1 ]
机构
[1] Xian Univ Sci & Technol, Sch Mat Sci & Engn, Xian 710054, Peoples R China
来源
ACS OMEGA | 2022年 / 7卷 / 01期
关键词
METAL-ORGANIC FRAMEWORKS; MOLECULAR-DYNAMICS; STABILITY; ADSORPTION; ENERGY;
D O I
10.1021/acsomega.1c02953
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Metal-organic frameworks (MOFs) possess an ordered and size-controllable porous structure, making them an interesting heterogeneous confining environment for water. Herein, molecular dynamics simulations are employed to investigate the structure of confined water vapor in zeolitic imidazolate framework-8 (ZIF-8) nanopores. Water dimers, which are rarely observed in liquid or water vapor, can form in ZIF-8 at room temperature. The six-ring-member gate is the main location of a water dimer in ZIF-8. The terminal methyl and CH groups of the imidazole linker interact with the water dimer by relatively weak hydrogen bonding. The above-presented findings provide a foundation for the elucidation of water confined in ZIF-8 and demonstrate the potential of obtaining low-order clusters of water by MOFs.
引用
收藏
页码:64 / 69
页数:6
相关论文
共 50 条
  • [21] ZIF-8 Vibrational Spectra: Peak Assignments and Defect Signals
    Ahmad, Mueed
    Patel, Roshan
    Lee, Dennis T.
    Corkery, Peter
    Kraetz, Andrea
    Tenney, Samuel A.
    Nykypanchuk, Dmytro
    Tong, Xiao
    Siepmann, J. Ilja
    Tsapatsis, Michael
    Boscoboinik, J. Anibal
    ACS APPLIED MATERIALS & INTERFACES, 2024, 16 (21) : 27887 - 27897
  • [22] Highly hydrophobic ZIF-8 particles and application for oil-water separation
    Sann, Ei Ei
    Pan, Yong
    Gao, Zhongfeng
    Zhan, Shenshan
    Xia, Fan
    SEPARATION AND PURIFICATION TECHNOLOGY, 2018, 206 : 186 - 191
  • [23] In situ growth of ZIF-8 within wood channels for water pollutants removal
    Zhang, Xiong-Fei
    Wang, Zhongguo
    Song, Lian
    Yao, Jianfeng
    SEPARATION AND PURIFICATION TECHNOLOGY, 2021, 266
  • [24] Structure Evolution of Chemically Degraded ZIF-8
    Metz, Peter C.
    Ryder, Matthew R.
    Ganesan, Arvind
    Bhattacharyya, Souryadeep
    Purdy, Stephen C.
    Nair, Sankar
    Page, Katharine
    JOURNAL OF PHYSICAL CHEMISTRY C, 2022, 126 (23) : 9736 - 9741
  • [25] Photocatalytic degradation of methylene blue in ZIF-8
    Jing, Huan-Ping
    Wang, Chong-Chen
    Zhang, Yi-Wen
    Wang, Peng
    Li, Ran
    RSC ADVANCES, 2014, 4 (97) : 54454 - 54462
  • [26] Biointerface Between ZIF-8 and Biomolecules and their Applications
    Abdelhamid, Hani Nasser
    BIOINTERFACE RESEARCH IN APPLIED CHEMISTRY, 2021, 11 (01): : 8283 - 8297
  • [27] Synergistic bimetallic nanozymes of Ni/ZIF-8 and Cu/ZIF-8 as carbonic anhydrase mimics
    Xiang, Yong
    Yu, Daoyong
    Zhang, Hongyu
    Wang, Xiaoqiang
    Ge, Baosheng
    Huang, Fang
    COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS, 2024, 689
  • [28] Life Cycle Assessment on Different Synthetic Routes of ZIF-8 Nanomaterials
    Ntouros, Vasileios
    Kousis, Ioannis
    Papadaki, Dimitra
    Pisello, Anna Laura
    Assimakopoulos, Margarita Niki
    ENERGIES, 2021, 14 (16)
  • [29] Nanoscale ZIF-8 as an efficient carboplatin carrier for targeted cancer therapy
    Pham, Toan Quyen
    Nguyen, Thanh Truc
    Nguyen, Huu Van
    Do, Hoang Han
    Linh, Ty Huynh
    Pham, Huong Thanh Thi
    Nguyen, Linh Ho Thuy
    Le, Minh Tri
    Doan, Tan Le Hoang
    INORGANIC CHEMISTRY COMMUNICATIONS, 2024, 165
  • [30] Effect of modification of ZIF-8 nanoparticles by triethylenetetramine on hydrogen sulfide uptake
    Nikparast, Yoones
    Moghadassi, Abdolreza
    Parvizian, Fahime
    Mohammadi, Ali
    JOURNAL OF THE INDIAN CHEMICAL SOCIETY, 2025, 102 (01)