VORONOVSKAJA'S THEOREM, SHAPE PRESERVING PROPERTIES AND ITERATIONS FOR COMPLEX q-BERNSTEIN POLYNOMIALS

被引:12
作者
Gal, Sorin G. [1 ]
机构
[1] Univ Oradea, Dept Math, Oradea 410087, Romania
关键词
Complex q-Bernstein polynomials; Voronovskaja's theorem; approximation in compact disks; iterations; starlikeness; convexity and spiral-likeness; CONVERGENCE; SATURATION;
D O I
10.1556/SScMath.2010.1156
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, first we prove Voronovskaja's convergence theorem for complex q-Bernstein polynomials, 0 < q < 1, attached to analytic functions in compact disks in C centered at origin, with quantitative estimate of this convergence. As an application, we obtain the exact order in approximation of analytic functions by the complex q-Bernstein polynomials on compact disks. Finally, we study the approximation properties of their iterates for any q > 0 and we prove that the complex q(n)-Bernstein polynomials with 0 < q(n) < 1 and q(n) -> 1, preserve in the unit disk (beginning with an index) the starlikeness, convexity and spiral-likeness.
引用
收藏
页码:23 / 43
页数:21
相关论文
共 12 条
[1]  
Gal S. G., 2008, Shape-Preserving Approximation by Real and Complex Polynomials
[2]   Voronovskaja's Theorem and Iterations for Complex Bernstein Polynomials in Compact Disks [J].
Gal, Sorin G. .
MEDITERRANEAN JOURNAL OF MATHEMATICS, 2008, 5 (03) :253-272
[3]  
Mocanu P.T., 1999, GEOMETRIC FUNCTION T
[4]   q-Bernstein polynomials and their iterates [J].
Ostrovska, S .
JOURNAL OF APPROXIMATION THEORY, 2003, 123 (02) :232-255
[5]   q-Bernstein polynomials of the Cauchy kernel [J].
Ostrovska, Sofiya .
APPLIED MATHEMATICS AND COMPUTATION, 2008, 198 (01) :261-270
[6]   The approximation of logarithmic function by q-Bernstein polynomials in the case q &gt; 1 [J].
Ostrovska, Sofiya .
NUMERICAL ALGORITHMS, 2007, 44 (01) :69-82
[7]  
Phillips G.M., 1997, Ann. Numer. Math, V4, P511
[8]  
Videnskii V. S, 2004, PROBLEMS MODERN MATH, P118
[9]  
Videnskii VS, 2005, OPER THEOR, V158, P213
[10]   Saturation of convergence for q-Bernstein polynomials in the case q ≥ 1 [J].
Wang, Heping ;
Wu, XueZhi .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 337 (01) :744-750