Neuromorphic electronics based on copying and pasting the brain

被引:128
作者
Ham, Donhee [1 ,2 ]
Park, Hongkun [3 ,4 ]
Hwang, Sungwoo [2 ,5 ]
Kim, Kinam [5 ]
机构
[1] Harvard Univ, John A Paulson Sch Engn & Appl Sci, Cambridge, MA 02138 USA
[2] Samsung Adv Inst Technol, Samsung Elect, Suwon, South Korea
[3] Harvard Univ, Dept Chem & Chem Biol, Cambridge, MA 02138 USA
[4] Harvard Univ, Dept Phys, Cambridge, MA 02138 USA
[5] Samsung Elect, Hwaseong, South Korea
关键词
CMOS NANOELECTRODE ARRAY; MEMRISTOR; CIRCUIT; NETWORK; NEUROSCIENCE; DESIGN; DEVICE;
D O I
10.1038/s41928-021-00646-1
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This Perspective explores the potential of an approach to neuromorphic electronics in which the functional synaptic connectivity map of a mammalian neuronal network is copied using a silicon neuro-electronic interface and then pasted onto a high-density three-dimensional network of solid-state memories. Reverse engineering the brain by mimicking the structure and function of neuronal networks on a silicon integrated circuit was the original goal of neuromorphic engineering, but remains a distant prospect. The focus of neuromorphic engineering has thus been relaxed from rigorous brain mimicry to designs inspired by qualitative features of the brain, including event-driven signalling and in-memory information processing. Here we examine current approaches to neuromorphic engineering and provide a vision that returns neuromorphic electronics to its original goal of reverse engineering the brain. The essence of this vision is to 'copy' the functional synaptic connectivity map of a mammalian neuronal network using advanced neuroscience tools and then 'paste' this map onto a high-density three-dimensional network of solid-state memories. Our copy-and-paste approach could potentially lead to silicon integrated circuits that better approximate computing traits of the brain, including low power, facile learning, adaptation, and even autonomy and cognition.
引用
收藏
页码:635 / 644
页数:10
相关论文
共 68 条
  • [1] Abbott J, 2020, IEEE J SOLID-ST CIRC, V55, P2567, DOI [10.1109/jssc.2020.3005816, 10.1109/JSSC.2020.3005816]
  • [2] A nanoelectrode array for obtaining intracellular recordings from thousands of connected neurons
    Abbott, Jeffrey
    Ye, Tianyang
    Krenek, Keith
    Gertner, Rona S.
    Ban, Steven
    Kim, Youbin
    Qin, Ling
    Wu, Wenxuan
    Park, Hongkun
    Ham, Donhee
    [J]. NATURE BIOMEDICAL ENGINEERING, 2020, 4 (02) : 232 - 241
  • [3] Abbott J, 2017, NAT NANOTECHNOL, V12, P460, DOI [10.1038/nnano.2017.3, 10.1038/NNANO.2017.3]
  • [4] Pattern classification by memristive crossbar circuits using ex situ and in situ training
    Alibart, Fabien
    Zamanidoost, Elham
    Strukov, Dmitri B.
    [J]. NATURE COMMUNICATIONS, 2013, 4
  • [5] Nanotools for Neuroscience and Brain Activity Mapping
    Alivisatos, A. Paul
    Andrews, Anne M.
    Boyden, Edward S.
    Chun, Miyoung
    Church, George M.
    Deisseroth, Karl
    Donoghue, John P.
    Fraser, Scott E.
    Lippincott-Schwartz, Jennifer
    Looger, Loren L.
    Masmanidis, Sotiris
    McEuen, Paul L.
    Nurmikko, Arto V.
    Park, Hongkun
    Peterka, Darcy S.
    Reid, Clay
    Roukes, Michael L.
    Scherer, Axel
    Schnitzer, Mark
    Sejnowski, Terrence J.
    Shepard, Kenneth L.
    Tsao, Doris
    Turrigiano, Gina
    Weiss, Paul S.
    Xu, Chris
    Yuste, Rafael
    Zhuang, Xiaowei
    [J]. ACS NANO, 2013, 7 (03) : 1850 - 1866
  • [6] Equivalent-accuracy accelerated neural-network training using analogue memory
    Ambrogio, Stefano
    Narayanan, Pritish
    Tsai, Hsinyu
    Shelby, Robert M.
    Boybat, Irem
    di Nolfo, Carmelo
    Sidler, Severin
    Giordano, Massimo
    Bodini, Martina
    Farinha, Nathan C. P.
    Killeen, Benjamin
    Cheng, Christina
    Jaoudi, Yassine
    Burr, Geoffrey W.
    [J]. NATURE, 2018, 558 (7708) : 60 - +
  • [7] Unsupervised Learning by Spike Timing Dependent Plasticity in Phase Change Memory (PCM) Synapses
    Ambrogio, Stefano
    Ciocchini, Nicola
    Laudato, Mario
    Milo, Valerio
    Pirovano, Agostino
    Fantini, Paolo
    Ielmini, Daniele
    [J]. FRONTIERS IN NEUROSCIENCE, 2016, 10
  • [8] [Anonymous], 2016, NAT METHODS, DOI DOI 10.1038/nmeth.3707
  • [9] Emulating short-term synaptic dynamics with memristive devices
    Berdan, Radu
    Vasilaki, Eleni
    Khiat, Ali
    Indiveri, Giacomo
    Serb, Alexandru
    Prodromakis, Themistoklis
    [J]. SCIENTIFIC REPORTS, 2016, 6
  • [10] Network anatomy and in vivo physiology of visual cortical neurons
    Bock, Davi D.
    Lee, Wei-Chung Allen
    Kerlin, Aaron M.
    Andermann, Mark L.
    Hood, Greg
    Wetzel, Arthur W.
    Yurgenson, Sergey
    Soucy, Edward R.
    Kim, Hyon Suk
    Reid, R. Clay
    [J]. NATURE, 2011, 471 (7337) : 177 - U59