Identification of a copper-induced intramolecular interaction in the transcription factor Mac1 from Saccharomyces cerevisiae

被引:84
|
作者
Jensen, LT
Winge, DR [1 ]
机构
[1] Univ Utah, Hlth Sci Ctr, Dept Biochem, Salt Lake City, UT 84132 USA
[2] Univ Utah, Hlth Sci Ctr, Dept Med, Salt Lake City, UT 84132 USA
来源
EMBO JOURNAL | 1998年 / 17卷 / 18期
关键词
copper; intramolecular interaction; Mac1; metalloregulation;
D O I
10.1093/emboj/17.18.5400
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Mad mediates copper (Cu)-dependent expression of genes involved in high-affinity uptake of copper ions in Saccharomyces cerevisiae. Mad is a transcriptional activator in Cu-deficient cells, but is inhibited in Cu-replete cells. Mad resides within the nucleus in both Cu-deficient and Cu-loaded cells. Cu inhibition of Mad appears to result from binding of eight copper ions within a C-terminal segment consisting of two Cys-rich motifs. In addition, two zinc ions are bound within the N-terminal DNA-binding domain. Only 4-5 mel. eq. Cu are bound to a mutant Mad (His279Gln substitution) that is impervious to Cu inhibition. The CuMac1 complex is luminescent, indicative of copper bound in the Cu(I) state. Cu binding induces a molecular switch resulting in an intramolecular interaction in Mad between the N-terminal DNA-binding domain and the C-terminal activation domain. This allosteric interaction is Cu dependent and is not observed when Mad contained the mutant His279Gln substitution. Fusion of the minimal DNA-binding domain of Mac1 (residues 1-159) to the minimal Cu-binding activation domain (residues 252-341) yields a functional Cu-regulated transcriptional activator. These results suggest that Cu repression of Mac1 arises from a Cu-induced intramolecular interaction that inhibits both DNA binding and transactivation activities.
引用
收藏
页码:5400 / 5408
页数:9
相关论文
共 50 条
  • [1] Mapping of the DNA binding domain of the copper-responsive transcription factor Mac1 from Saccharomyces cerevisiae
    Jensen, LT
    Posewitz, MC
    Srinivasan, C
    Winge, DR
    JOURNAL OF BIOLOGICAL CHEMISTRY, 1998, 273 (37) : 23805 - 23811
  • [3] GRISEA, a copper-modulated transcription factor from Podospora anserina involved in senescence and morphogenesis, is an ortholog of MAC1 in Saccharomyces cerevisiae
    Borghouts, C
    Osiewacz, HD
    MOLECULAR AND GENERAL GENETICS, 1998, 260 (05): : 492 - 502
  • [4] GRISEA, a copper-modulated transcription factor from Podospora anserina involved in senescence and morphogenesis, is an ortholog of MAC1 in Saccharomyces cerevisiae
    C. Borghouts
    H. D. Osiewacz
    Molecular and General Genetics MGG, 1998, 260 : 492 - 502
  • [5] Independent metalloregulation of Ace1 and Mac1 in Saccharomyces cerevisiae
    Keller, G
    Bird, A
    Winge, DR
    EUKARYOTIC CELL, 2005, 4 (11) : 1863 - 1871
  • [6] Copper differentially regulates the activity and degradation of yeast Mac1 transcription factor
    Zhu, ZW
    Labbé, S
    Peña, MMO
    Thiele, DJ
    JOURNAL OF BIOLOGICAL CHEMISTRY, 1998, 273 (03) : 1277 - 1280
  • [7] THE MAC1 PROTEIN IN SACCHAROMYCES-CEREVISIAE - A HOMOLOG OF CU-DEPENDENT YEAST TRANSCRIPTION FACTORS
    JUNGMANN, J
    JENTSCH, S
    KOSMAN, D
    LEE, J
    ROMEO, A
    HASSETT, R
    PARDEE, T
    FASEB JOURNAL, 1994, 8 (07): : A1366 - A1366
  • [8] The essential liaison of two copper proteins: the Cu-sensing transcription factor Mac1 and the Cu/Zn superoxide dismutase Sod1 in Saccharomyces cerevisiae
    Dimitra Dialynaki
    Athanasia Stavropoulou
    Maria Laskou
    Despina Alexandraki
    Current Genetics, 2023, 69 : 41 - 53
  • [9] Cadmium regulates copper homoeostasis by inhibiting the activity of Mac1, a transcriptional activator of the copper regulon, in Saccharomyces cerevisiae
    Heo, Dong-Hyuk
    Baek, In-Joon
    Kang, Hyun-Jun
    Kim, Ji-Hyun
    Chang, Miwha
    Jeong, Mi-Young
    Kim, Tae-Hyoung
    Choi, Ii-Dong
    Yun, Cheol-Won
    BIOCHEMICAL JOURNAL, 2010, 431 : 257 - 265
  • [10] The essential liaison of two copper proteins: the Cu-sensing transcription factor Mac1 and the Cu/Zn superoxide dismutase Sod1 in Saccharomyces cerevisiae
    Dialynaki, Dimitra
    Stavropoulou, Athanasia
    Laskou, Maria
    Alexandraki, Despina
    CURRENT GENETICS, 2023, 69 (01) : 41 - 53