Mapping Regional Soil Organic Matter Based on Sentinel-2A and MODIS Imagery Using Machine Learning Algorithms and Google Earth Engine

被引:34
|
作者
Zhang, Meiwei [1 ]
Zhang, Meinan [2 ,3 ]
Yang, Haoxuan [4 ]
Jin, Yuanliang [5 ]
Zhang, Xinle [1 ]
Liu, Huanjun [1 ,6 ]
机构
[1] Northeast Agr Univ, Sch Publ Adm & Law, Harbin 150030, Peoples R China
[2] Tsinghua Univ, Dept Earth Syst Sci, Beijing 100089, Peoples R China
[3] Chinese Acad Forestry, Key Lab Forest Ecol & Environm, State Forestry Adm, Inst Forest Ecol Environm & Protect, Beijing 100091, Peoples R China
[4] Tongji Univ, Coll Surveying & Geoinformat, Shanghai 200092, Peoples R China
[5] Tsinghua Univ, Sch Environm, Beijing 100089, Peoples R China
[6] Chinese Acad Sci, Northeast Inst Geog & Agroecol, Changchun 130012, Peoples R China
关键词
soil organic matter; Sentinel-2A; MODIS; machine learning algorithms; Google Earth Engine; Songnen Plain; China; ARTIFICIAL NEURAL-NETWORK; INFRARED REFLECTANCE SPECTROSCOPY; SPATIAL PREDICTION; CARBON CONTENT; RANDOM FORESTS; TOTAL NITROGEN; SONGNEN PLAIN; REGRESSION; STOCKS; VEGETATION;
D O I
10.3390/rs13152934
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Many studies have attempted to predict soil organic matter (SOM), whereas mapping high-precision and high-resolution SOM maps remains a challenge due to the difficulty of selecting appropriate satellite data sources and prediction algorithms. This study aimed to investigate the influence of different remotely sensed images and machine learning algorithms on SOM prediction. We constructed two comparative experiments, i.e., full-band and common-band variable datasets of Sentinel-2A and MODIS images using Google Earth Engine (GEE). The predictive performances of random forest (RF), artificial neural network (ANN), and support vector regression (SVR) algorithms were evaluated, and the SOM map was generated for the Songnen Plain. Results showed that the model based on the full-band Sentinel-2A dataset achieved the best performance. The application of Sentinel-2A data resulted in mean relative improvements (RIs) of 7.67% and 5.87%, respectively. The RF achieved a lower root mean squared error (RMSE = 0.68%) and a higher coefficient of determination (R-2 = 0.67) in all of the predicted scenarios than ANN and SVR. The resultant SOM map accurately characterized the SOM spatial distribution. Therefore, the Sentinel-2A data have obvious advantages over MODIS due to their higher spectral and spatial resolutions, and the combination of the RF algorithm and GEE is an effective approach to SOM mapping.
引用
收藏
页数:21
相关论文
共 50 条
  • [21] Classification of poplar trees with object-based ensemble learning algorithms using Sentinel-2A imagery
    Tonbul, H.
    Colkesen, I
    Kavzoglu, T.
    JOURNAL OF GEODETIC SCIENCE, 2020, 10 (01) : 14 - 22
  • [22] Mapping the Soil Salinity Distribution and Analyzing Its Spatial and Temporal Changes in Bachu County, Xinjiang, Based on Google Earth Engine and Machine Learning
    Zhang, Yue
    Wu, Hongqi
    Kang, Yiliang
    Fan, Yanmin
    Wang, Shuaishuai
    Liu, Zhuo
    He, Feifan
    AGRICULTURE-BASEL, 2024, 14 (04):
  • [23] An Experiment for Surface Soil Moisture Mapping Using Sentinel-1 and Sentinel-2 Image on Google Earth Engine
    Lee, Jihyun
    Kim, Kwangseob
    Lee, Kiwon
    KOREAN JOURNAL OF REMOTE SENSING, 2023, 39 (05) : 599 - 608
  • [24] Retrieval and Mapping of Soil Organic Carbon Using Sentinel-2A Spectral Images from Bare Cropland in Autumn
    Wang, Ke
    Qi, Yanbing
    Guo, Wenjing
    Zhang, Jielin
    Chang, Qingrui
    REMOTE SENSING, 2021, 13 (06)
  • [25] Decameter Cropland LAI/FPAR Estimation From Sentinel-2 Imagery Using Google Earth Engine
    Sun, Yuanheng
    Qin, Qiming
    Ren, Huazhong
    Zhang, Yao
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [26] CLASSICATION OF LAND-COVER THROUGH MACHINE LEARNING ALGORITHMS FOR FUSION OF SENTINEL-2A AND PLANETSCOPE IMAGERY
    Zaraza Aguiler, Maycol Alejandro
    2020 IEEE LATIN AMERICAN GRSS & ISPRS REMOTE SENSING CONFERENCE (LAGIRS), 2020, : 246 - 253
  • [27] Digital mapping of soil salinization based on Sentinel-1 and Sentinel-2 data combined with machine learning algorithms
    Ma, Guolin
    Ding, Jianli
    Han, Lijng
    Zhang, Zipeng
    Ran, Si
    REGIONAL SUSTAINABILITY, 2021, 2 (02) : 177 - 188
  • [28] Automatic land cover classification with SAR imagery and Machine learning using Google Earth Engine
    Desai, Geeta T.
    Gaikwad, Abhay N.
    INTERNATIONAL JOURNAL OF ELECTRICAL AND COMPUTER ENGINEERING SYSTEMS, 2022, 13 (10) : 909 - 916
  • [29] Automated Mapping of Wetland Ecosystems: A Study Using Google Earth Engine and Machine Learning for Lotus Mapping in Central Vietnam
    Pham, Huu-Ty
    Nguyen, Hao-Quang
    Le, Khac-Phuc
    Tran, Thi-Phuong
    Ha, Nam-Thang
    WATER, 2023, 15 (05)
  • [30] Geo-Object-Based Soil Organic Matter Mapping Using Machine Learning Algorithms With Multi-Source Geo-Spatial Data
    Wu, Tianjun
    Luo, Jiancheng
    Dong, Wen
    Sun, Yingwei
    Xia, Liegang
    Zhang, Xuejian
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2019, 12 (04) : 1091 - 1106