On the nonexistence, existence and uniqueness of limit cycles

被引:139
作者
Giacomini, H [1 ]
Llibre, J [1 ]
Viano, M [1 ]
机构
[1] UNIV AUTONOMA BARCELONA,DEPT MATEMAT,E-08193 BARCELONA,SPAIN
关键词
D O I
10.1088/0951-7715/9/2/013
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present two new criteria for studying the nonexistence, existence and uniqueness of limit cycles of planar vector fields. We apply these criteria to some families of quadratic and cubic polynomial vector fields, and to compute an explicit formula for the number of limit cycles which bifurcate out of the linear centre x = -y, y, = x, when we deal with the system x = -y + epsilon Sigma(i+j=1)(n) a(ij)x(i)y(j), y = x + epsilon Sigma(i+j=1)(n) b(ij)x(i)y(j). Moreover, by using the second criterion we present a method to derive the shape of the bifurcated limit cycles from a centre.
引用
收藏
页码:501 / 516
页数:16
相关论文
共 26 条
[1]  
Andronow A, 1929, CR HEBD ACAD SCI, V189, P559
[2]  
Arnold V.I., 1989, MATH METHODS CLASSIC
[3]  
ARNOLD VI, 1988, ENCY MATH SCI, V1
[4]   BIFURCATION OF LIMIT-CYCLES FROM CENTERS AND SEPARATRIX CYCLES OF PLANAR ANALYTIC SYSTEMS [J].
BLOWS, TR ;
PERKO, LM .
SIAM REVIEW, 1994, 36 (03) :341-376
[5]   BIFURCATION OF LIMIT-CYCLES FROM QUADRATIC ISOCHRONES [J].
CHICONE, C ;
JACOBS, M .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1991, 91 (02) :268-326
[6]  
FRANCOISE JP, 1994, COMMUNICATION
[7]  
GASSUL A, 1993, INT C DIFF EQ, P531
[8]   DETERMINATION OF LIMIT-CYCLES FOR 2-DIMENSIONAL DYNAMICAL-SYSTEMS [J].
GIACOMINI, H ;
VIANO, M .
PHYSICAL REVIEW E, 1995, 52 (01) :222-228
[9]  
Gradsheyn I.S., 1980, TABLE INTEGRALS SERI
[10]  
GUCKENHEIMER J, 1986, APPLIED MATH SCI, V42