Biosynthesis of selenium nanoparticles by Azoarcus sp CIB

被引:86
作者
Fernandez-Llamosas, Helga [1 ]
Castro, Laura [2 ]
Luisa Blazquez, Maria [2 ]
Diaz, Eduardo [1 ]
Carmona, Manuel [1 ]
机构
[1] CSIC, Ctr Invest Biol, Dept Environm Biol, Ramiro de Maeztu 9, Madrid 28040, Spain
[2] Univ Complutense Madrid, Fac Quim, Dept Met Engn & Mat Sci, Madrid, Spain
关键词
Nanoparticles; Selenium; Bioremediation; Azoarcus; Rice; Nanotechnology; Biotechnology; BACTERIUM RHODOBACTER-CAPSULATUS; HEAVY-METAL RESISTANCE; RHODOSPIRILLUM-RUBRUM; BIOLOGICAL SYNTHESIS; RESPIRING BACTERIA; ELEMENTAL SELENIUM; HUMAN HEALTH; REDUCTION; OXYANIONS; GROWTH;
D O I
10.1186/s12934-016-0510-y
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Background: Different bacteria have been reported so far that link selenite resistance to the production of metallic selenium nanoparticles (SeNPs). Although SeNPs have many biotechnological applications in diverse areas, the molecular mechanisms involved in their microbial genesis are not fully understood. The Azoarcus genus is a physiologically versatile group of beta-proteobacteria of great environmental relevance. Azoarcus sp. CIB is a facultative anaerobe that combines the ability to degrade under aerobic and/or anaerobic conditions a wide range of aromatic compounds, including some toxic hydrocarbons such as toluene and m-xylene, with an endophytic life style in the root of rice. We unravel here an additional physiological feature of the strain CIB that is related to its resistance to selenium oxyanions and the formation of SeNPs. Results: This work is the first report of a member of the Azoarcus genus that is able to anaerobically grow in the presence of selenite. Electron microscopy preparations and X-ray spectroscopy analyses demonstrate the reduction of selenite to spherical electron-dense SeNPs whose average size was 123 +/- 35 nm of diameter. Our data suggest that the main molecular mechanism of selenite resistance resides on an energy-dependent selenite exporter. Azoarcus cells trigger the synthesis of SeNPs when they reach the stationary-phase of growth, and either the exhaustion of electron donor or acceptor, both of which lead to starvation conditions, produce the reduction of selenite to red elemental selenium. Azoarcus becomes a promising biocatalyst, either as whole cells or cellular extracts, for the anaerobic and/or aerobic green synthesis of SeNPs. Conclusions: Azoarcus turns out to be a new eco-friendly system to reduce selenite and produce spherical SeNPs. Moreover, this is the first report of a rice endophyte able to produce SeNPs. Since Azoarcus is also able to degrade both aerobically and anaerobically toxic aromatic compounds of great environmental concern, it becomes a suitable candidate for a more sustainable agricultural practice and for bioremediation strategies.
引用
收藏
页数:10
相关论文
共 50 条
[1]  
Ali E N., 2013, International Journal of Pharma and Biosciences, V2, P38
[2]   Selenite-reducing capacity of the copper-containing nitrite reductase of Rhizobium sullae [J].
Basaglia, Marina ;
Toffanin, Annita ;
Baldan, Enrico ;
Bottegal, Mariangela ;
Shapleigh, James P. ;
Casella, Sergio .
FEMS MICROBIOLOGY LETTERS, 2007, 269 (01) :124-130
[3]   Effects of the metalloid oxyanion tellurite (TeO32-) on growth characteristics of the phototrophic bacterium Rhodobacter capsulatus [J].
Borghese, R ;
Borsetti, F ;
Foladori, P ;
Ziglio, G ;
Zannoni, D .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2004, 70 (11) :6595-6602
[4]   Reduction of chalcogen oxyanions and generation of nanoprecipitates by the photosynthetic bacterium Rhodobacter capsulatus [J].
Borghese, Roberto ;
Baccolini, Chiara ;
Francia, Francesco ;
Sabatino, Piera ;
Turner, Raymond J. ;
Zannoni, Davide .
JOURNAL OF HAZARDOUS MATERIALS, 2014, 269 :24-30
[5]  
BRADFORD MM, 1976, ANAL BIOCHEM, V72, P248, DOI 10.1016/0003-2697(76)90527-3
[6]   Thematic issue - Interactions of bacteria with metals - Guest editorial [J].
Brown, NL ;
Morby, AP ;
Robinson, NJ .
FEMS MICROBIOLOGY REVIEWS, 2003, 27 (2-3) :129-129
[7]   Biomineralization of selenium by the selenate-respiring bacterium Thauera selenatis [J].
Butler, Clive S. ;
Debieux, Charles M. ;
Dridge, Elizabeth J. ;
Splatt, Peter ;
Wright, Matthew .
BIOCHEMICAL SOCIETY TRANSACTIONS, 2012, 40 :1239-1243
[8]   Anaerobic Catabolism of Aromatic Compounds: a Genetic and Genomic View [J].
Carmona, Manuel ;
Teresa Zamarro, Maria ;
Blazquez, Blas ;
Durante-Rodriguez, Gonzalo ;
Juarez, Javier F. ;
Valderrama, J. Andres ;
Barragan, Maria J. L. ;
Garcia, Jose Luis ;
Diaz, Eduardo .
MICROBIOLOGY AND MOLECULAR BIOLOGY REVIEWS, 2009, 73 (01) :71-+
[9]   Denitrification and aerobic respiration, hybrid electron transport chains and co-evolution [J].
Chen, Jianwei ;
Strous, Marc .
BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS, 2013, 1827 (02) :136-144
[10]   ImageJ for microscopy [J].
Collins, Tony J. .
BIOTECHNIQUES, 2007, 43 (01) :25-+