A priori bounds and multiplicity of positive solutions for p-Laplacian Neumann problems with sub-critical growth

被引:12
作者
Boscaggin, Alberto [1 ]
Colasuonno, Francesca [2 ]
Noris, Benedetta [3 ]
机构
[1] Univ Torino, Dipartimento Matemat, Via Carlo Alberto 10, I-10123 Turin, Italy
[2] Univ Bologna, Alma Mater Studiorum, Dipartimento Matemat, Piazza Porta S Donato 5, I-40126 Bologna, Italy
[3] Univ Picardie Jules Verne, Lab Amienois Math Fondamentale & Appliquee, 33 Rue St Leu, F-80039 Amiens, France
基金
欧洲研究理事会;
关键词
quasilinear elliptic equations; shooting method; a priori estimates; existence and multiplicity; Neumann boundary conditions; RADIALLY SYMMETRICAL-SOLUTIONS; CRITICAL EXPONENTS; DIRICHLET PROBLEM; EXISTENCE; EQUATIONS;
D O I
10.1017/prm.2018.143
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let 1 < p < +8 and let O. RN be either a ball or an annulus. We continue the analysis started in [Boscaggin, Colasuonno, Noris, ESAIM Control Optim. Calc. Var. (2017)], concerning quasilinear Neumann problems of the type -Delta pu = f(u), u> 0 in O,..u = 0 on. O. We suppose that f(0) = f(1) = 0 and that f is negative between the two zeros and positive after. In case O is a ball, we also require that f grows less than the Sobolev-critical power at infinity. We prove a priori bounds of radial solutions, focussing in particular on solutions which start above 1. As an application, we use the shooting technique to get existence, multiplicity and oscillatory behaviour (around 1) of non-constant radial solutions.
引用
收藏
页码:73 / 102
页数:30
相关论文
共 42 条
  • [1] EXISTENCE AND NONEXISTENCE OF POSITIVE RADIAL SOLUTIONS OF NEUMANN PROBLEMS WITH CRITICAL SOBOLEV EXPONENTS
    ADIMURTHI
    YADAVA, SL
    [J]. ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1991, 115 (03) : 275 - 296
  • [2] A NOTE ON A CRITICAL EXPONENT PROBLEM WITH NEUMANN BOUNDARY-CONDITIONS
    ADIMURTHI
    YADAVA, SL
    KNAAP, MC
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1992, 18 (03) : 287 - 294
  • [3] Adimurthi, 1997, ARCH RATION MECH AN, V139, P239
  • [4] A priori estimates and continuation methods for positive solutions of p-Laplace equations
    Azizieh, C
    Clément, P
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2002, 179 (01) : 213 - 245
  • [5] A note on the radial solutions for the supercritical Henon equation
    Barutello, Vivina
    Secchi, Simone
    Serra, Enrico
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 341 (01) : 720 - 728
  • [6] Multiple positive solutions of the stationary Keller-Segel system
    Bonheure, Denis
    Casteras, Jean-Baptiste
    Noris, Benedetta
    [J]. CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2017, 56 (03)
  • [7] Multiple radial positive solutions of semilinear elliptic problems with Neumann boundary conditions
    Bonheure, Denis
    Grumiau, Christopher
    Troestler, Christophe
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2016, 147 : 236 - 273
  • [8] Multi-layer radial solutions for a supercritical Neumann problem
    Bonheure, Denis
    Grossi, Massimo
    Noris, Benedetta
    Terracini, Susanna
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2016, 261 (01) : 455 - 504
  • [9] Increasing radial solutions for Neumann problems without growth restrictions
    Bonheure, Denis
    Noris, Benedetta
    Weth, Tobias
    [J]. ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2012, 29 (04): : 573 - 588
  • [10] MULTIPLE POSITIVE SOLUTIONS FOR A CLASS OF p-LAPLACIAN NEUMANN PROBLEMS WITHOUT GROWTH CONDITIONS
    Boscaggin, Alberto
    Colasuonno, Francesca
    Noris, Benedetta
    [J]. ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS, 2018, 24 (04) : 1625 - 1644