A priori bounds and multiplicity of positive solutions for p-Laplacian Neumann problems with sub-critical growth

被引:12
|
作者
Boscaggin, Alberto [1 ]
Colasuonno, Francesca [2 ]
Noris, Benedetta [3 ]
机构
[1] Univ Torino, Dipartimento Matemat, Via Carlo Alberto 10, I-10123 Turin, Italy
[2] Univ Bologna, Alma Mater Studiorum, Dipartimento Matemat, Piazza Porta S Donato 5, I-40126 Bologna, Italy
[3] Univ Picardie Jules Verne, Lab Amienois Math Fondamentale & Appliquee, 33 Rue St Leu, F-80039 Amiens, France
基金
欧洲研究理事会;
关键词
quasilinear elliptic equations; shooting method; a priori estimates; existence and multiplicity; Neumann boundary conditions; RADIALLY SYMMETRICAL-SOLUTIONS; CRITICAL EXPONENTS; DIRICHLET PROBLEM; EXISTENCE; EQUATIONS;
D O I
10.1017/prm.2018.143
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let 1 < p < +8 and let O. RN be either a ball or an annulus. We continue the analysis started in [Boscaggin, Colasuonno, Noris, ESAIM Control Optim. Calc. Var. (2017)], concerning quasilinear Neumann problems of the type -Delta pu = f(u), u> 0 in O,..u = 0 on. O. We suppose that f(0) = f(1) = 0 and that f is negative between the two zeros and positive after. In case O is a ball, we also require that f grows less than the Sobolev-critical power at infinity. We prove a priori bounds of radial solutions, focussing in particular on solutions which start above 1. As an application, we use the shooting technique to get existence, multiplicity and oscillatory behaviour (around 1) of non-constant radial solutions.
引用
收藏
页码:73 / 102
页数:30
相关论文
共 50 条
  • [1] Existence and Multiplicity of Solutions for p-Laplacian Neumann Problems
    Jiang, Qin
    Ma, Sheng
    Pasca, Daniel
    RESULTS IN MATHEMATICS, 2019, 74 (01)
  • [2] Existence and Multiplicity of Solutions for p-Laplacian Neumann Problems
    Qin Jiang
    Sheng Ma
    Daniel Paşca
    Results in Mathematics, 2019, 74
  • [3] Positive solutions for a p-Laplacian equation with sub-critical singular parametric reaction term
    Candito, Pasquale
    Failla, Giuseppe
    Livrea, Roberto
    ZEITSCHRIFT FUR ANALYSIS UND IHRE ANWENDUNGEN, 2025, 44 (1-2): : 145 - 164
  • [4] Positive solutions for the Neumann p-Laplacian
    Averna, Diego
    Papageorgiou, Nikolaos S.
    Tornatore, Elisabetta
    MONATSHEFTE FUR MATHEMATIK, 2018, 185 (04): : 557 - 573
  • [5] Positive solutions for the Neumann p-Laplacian
    Diego Averna
    Nikolaos S. Papageorgiou
    Elisabetta Tornatore
    Monatshefte für Mathematik, 2018, 185 : 557 - 573
  • [6] EXISTENCE AND MULTIPLICITY OF SOLUTIONS FOR THE NONCOERCIVE NEUMANN P-LAPLACIAN
    Papageorgiou, Nikolaos S.
    Rocha, Eugenio M.
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2010, : 57 - 66
  • [7] MULTIPLE POSITIVE SOLUTIONS FOR A CLASS OF p-LAPLACIAN NEUMANN PROBLEMS WITHOUT GROWTH CONDITIONS
    Boscaggin, Alberto
    Colasuonno, Francesca
    Noris, Benedetta
    ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS, 2018, 24 (04) : 1625 - 1644
  • [8] EXISTENCE AND NONEXISTENCE OF POSITIVE SOLUTIONS FOR PARAMETRIC NEUMANN PROBLEMS WITH p-LAPLACIAN
    Motreanu, Dumitru
    Motreanu, Viorica V.
    Papageorgiou, Nikolaos S.
    TOHOKU MATHEMATICAL JOURNAL, 2014, 66 (01) : 137 - 153
  • [9] Multiplicity of positive solutions to a p-Laplacian equation involving critical nonlinearity
    Alves, CO
    Ding, YH
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2003, 279 (02) : 508 - 521
  • [10] Multiplicity results for critical p-Laplacian problems
    Giuseppina Barletta
    Pasquale Candito
    Salvatore A. Marano
    Kanishka Perera
    Annali di Matematica Pura ed Applicata (1923 -), 2017, 196 : 1431 - 1440