Hypoxia-inducible factor prolyl-hydroxylase: Purification and assays of PHD2

被引:47
作者
Hewitson, Kirsty S. [1 ]
Schofield, Christopher J.
Ratcliffe, Peter J.
机构
[1] Univ Oxford, Chem Res Lab, Dept Chem, Oxford, England
[2] Univ Oxford, Oxford, England
来源
OXYGEN BIOLOGY AND HYPOXIA | 2007年 / 435卷
关键词
D O I
10.1016/S0076-6879(07)35002-7
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
The adaptation of animals to oxygen availability is mediated by a transcription factor termed hypoxia-inclucible factor (HIF). HIF is an alpha (alpha)/beta (beta) heterodimer that binds hypoxia response elements (HREs) of target genes, including some of medicinal importance, such as erythropoietin (EPO) and vascular endothelial growth factor (VEGF). White the concentration of the HIF-beta subunit, a constitutive nuclear protein, does not vary with oxygen availability, the abundance and activity of the HIF-alpha subunits are tightly regulated via oxygen-dependent modification of specific residues. Hydroxylation of prolyl residues (Pr0402 and Pr0564 in H I F-1 alpha) promotes interaction with the von Hippel-Lindau E(3) ubiquitin ligase and, consequently, proteotytic destruction by the ubiquitin-proteasome pathway. This prolyl hydroxylation is catalyzed by the prolyl-hydroxylase domain (PHD) containing enzymes for which three isozymes have been identified in humans (1-3). Additionally, asparaginyl hydroxylation (Asn803 in HIF-1 alpha) by factor-inhibiting HIF (FIH) ablates interaction of the HIF-alpha subunit with the coactivator P300, providing an alternative mechanism for down-regulation of HIF-dependent genes. Under hypoxic conditions, when oxygen-mediated regulation of the alpha-subunits is curtailed or minimized, dimerization of the alpha- and beta-subunits occurs with subsequent target gene upregulation. Therapeutic activation of HIF signaling has been suggested as a potential treatment for numerous conditions, including ischemia, stroke, heart attack, inflammation, and wounding. One possible route to achieve this is via inhibition of the HIF hydroxylases. This chapter details methods for the purification and assaying of PHD2, the most abundant PHD and the most important in setting steady-state levels of HIF-alpha. Assays are described that measure the activity of PHD2 via direct and indirect means. Furthermore, conditions for the screening of small molecules against PHD2 are described.
引用
收藏
页码:25 / 42
页数:18
相关论文
共 42 条
[1]   Differential function of the prolyl hydroxylases PHD1, PHD2, and PHD3 in the regulation of hypoxia-inducible factor [J].
Appelhoff, RJ ;
Tian, YM ;
Raval, RR ;
Turley, H ;
Harris, AL ;
Pugh, CW ;
Ratcliffe, PJ ;
Gleadle, JM .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2004, 279 (37) :38458-38465
[2]   Regulation of the Drosophila bHLH-PAS protein Sima by hypoxia:: Functional evidence for homology with mammalian HIF-1α [J].
Bacon, NCM ;
Wappner, P ;
O'Rourke, JF ;
Bartlett, SM ;
Shilo, B ;
Pugh, CW ;
Ratcliffe, PJ .
BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 1998, 249 (03) :811-816
[3]   HIF prolyl-hydroxylase 2 is the key oxygen sensor setting low steady-state levels of HIF-1α in normoxia [J].
Berra, E ;
Benizri, E ;
Ginouvès, A ;
Volmat, V ;
Roux, D ;
Pouysségur, J .
EMBO JOURNAL, 2003, 22 (16) :4082-4090
[4]   A conserved family of prolyl-4-hydroxylases that modify HIF [J].
Bruick, RK ;
McKnight, SL .
SCIENCE, 2001, 294 (5545) :1337-1340
[5]   Structural studies on 2-oxoglutarate oxygenases and related double-stranded β-helix fold proteins [J].
Clifton, Ian J. ;
McDonough, Michael A. ;
Ehrismann, Dominic ;
Kershaw, Nadia J. ;
Granatino, Nicolas ;
Schofield, Christopher J. .
JOURNAL OF INORGANIC BIOCHEMISTRY, 2006, 100 (04) :644-669
[6]   Dioxygen activation at mononuclear nonheme iron active sites: Enzymes, models, and intermediates [J].
Costas, M ;
Mehn, MP ;
Jensen, MP ;
Que, L .
CHEMICAL REVIEWS, 2004, 104 (02) :939-986
[7]   ASSAY OF PROLYL 4-HYDROXYLASE BY THE CHROMATOGRAPHIC DETERMINATION OF [C-14] SUCCINIC ACID ON ION-EXCHANGE MINICOLUMNS [J].
CUNLIFFE, CJ ;
FRANKLIN, TJ ;
GASKELL, RM .
BIOCHEMICAL JOURNAL, 1986, 240 (02) :617-619
[8]   Studies on the activity of the hypoxia-inducible-factor hydroxylases using an oxygen consumption assay [J].
Ehrismann, Dominic ;
Flashman, Emily ;
Genn, David N. ;
Mathioudakis, Nicolas ;
Hewitson, Kirsty S. ;
Ratcliffe, Peter J. ;
Schofield, Christopher J. .
BIOCHEMICAL JOURNAL, 2007, 401 :227-234
[9]   C-elegans EGL-9 and mammalian homologs define a family of dioxygenases that regulate HIF by prolyl hydroxylation [J].
Epstein, ACR ;
Gleadle, JM ;
McNeill, LA ;
Hewitson, KS ;
O'Rourke, J ;
Mole, DR ;
Mukherji, M ;
Metzen, E ;
Wilson, MI ;
Dhanda, A ;
Tian, YM ;
Masson, N ;
Hamilton, DL ;
Jaakkola, P ;
Barstead, R ;
Hodgkin, J ;
Maxwell, PH ;
Pugh, CW ;
Schofield, CJ ;
Ratcliffe, PJ .
CELL, 2001, 107 (01) :43-54
[10]   Fe(II)/α-ketoglutarate-dependent hydroxylases and related enzymes [J].
Hausinger, RP .
CRITICAL REVIEWS IN BIOCHEMISTRY AND MOLECULAR BIOLOGY, 2004, 39 (01) :21-68