Methylglyoxal: An Emerging Signaling Molecule in Plant Abiotic Stress Responses and Tolerance

被引:179
|
作者
Hoque, Tahsina S. [1 ]
Hossain, Mohammad A. [2 ]
Mostofa, Mohammad G. [3 ]
Burritt, David J. [4 ]
Fujita, Masayuki [5 ]
Tran, Lam-Son P. [6 ,7 ,8 ]
机构
[1] Bangladesh Agr Univ, Dept Soil Sci, Mymensingh, Bangladesh
[2] Bangladesh Agr Univ, Dept Genet & Plant Breeding, Mymensingh, Bangladesh
[3] Bangabandhu Sheikh Mujibur Rahman Agr Univ, Dept Biochem & Mol Biol, Gazipur, Bangladesh
[4] Univ Otago, Dept Bot, Dunedin, New Zealand
[5] Kagawa Univ, Fac Agr, Dept Appl Biol Sci, Lab Plant Stress Responses, Takamatsu, Kagawa 760, Japan
[6] Ton Duc Thang Univ, Plant Abiot Stress Res Grp, Ho Chi Minh City, Vietnam
[7] Ton Duc Thang Univ, Fac Sci Appl, Ho Chi Minh City, Vietnam
[8] RIKEN, Signaling Pathway Res Unit, Ctr Sustainable Resource Sci, Yokohama, Kanagawa, Japan
来源
FRONTIERS IN PLANT SCIENCE | 2016年 / 7卷
关键词
abiotic stress; glyoxalases; methylglyoxal; reactive oxygen species; signaling crosstalk; stress tolerance mechanism; SATIVA L. SEEDLINGS; GLYOXALASE-I GENE; ANTIOXIDANT DEFENSE; ABSCISIC-ACID; ORYZA-SATIVA; SALT TOLERANCE; DETOXIFICATION SYSTEMS; ARABIDOPSIS-THALIANA; HYDROGEN-PEROXIDE; OXIDATIVE DAMAGE;
D O I
10.3389/fpls.2016.01341
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
The oxygenated short aldehyde methylglyoxal (MG) is produced in plants as a by-product of a number of metabolic reactions, including elimination of phosphate groups from glycolysis intermediates dihydroxyacetone phosphate and glyceraldehyde 3-phosphate. MG is mostly detoxified by the combined actions of the enzymes glyoxalase I and glyoxalase II that together with glutathione make up the glyoxalase system. Under normal growth conditions, basal levels of MG remain low in plants; however, when plants are exposed to abiotic stress, MG can accumulate to much higher levels. Stress-induced MG functions as a toxic molecule, inhibiting different developmental processes, including seed germination, photosynthesis and root growth, whereas MG, at low levels, acts as an important signaling molecule, involved in regulating diverse events, such as cell proliferation and survival, control of the redox status of cells, and many other aspects of general metabolism and cellular homeostases. MG can modulate plant stress responses by regulating stomatal opening and closure, the production of reactive oxygen species, cytosolic calcium ion concentrations, the activation of inward rectifying potassium channels and the expression of many stress-responsive genes. MG appears to play important roles in signal transduction by transmitting and amplifying cellular signals and functions that promote adaptation of plants growing under adverse environmental conditions. Thus, MG is now considered as a potential biochemical marker for plant abiotic stress tolerance, and is receiving considerable attention by the scientific community. In this review, we will summarize recent findings regarding MG metabolism in plants under abiotic stress, and evaluate the concept of MG signaling. In addition, we will demonstrate the importance of giving consideration to MG metabolism and the glyoxalase system, when investigating plant adaptation and responses to various environmental stresses.
引用
收藏
页数:11
相关论文
共 50 条
  • [31] Nitric oxide signaling and its crosstalk with other plant growth regulators in plant responses to abiotic stress
    Asgher, Mohd
    Per, Tasir S.
    Masood, Asim
    Fatma, Mehar
    Freschi, Luciano
    Corpas, Francisco J.
    Khan, Nafees A.
    ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH, 2017, 24 (03) : 2273 - 2285
  • [32] Lipid signalling in plant responses to abiotic stress
    Hou, Quancan
    Ufer, Guido
    Bartels, Dorothea
    PLANT CELL AND ENVIRONMENT, 2016, 39 (05) : 1029 - 1048
  • [33] Epigenetic control of plant abiotic stress responses
    Ma, Lijun
    Xing, Lihe
    Li, Zicong
    Jiang, Danhua
    JOURNAL OF GENETICS AND GENOMICS, 2025, 52 (02): : 129 - 144
  • [34] Melatonin as a regulator of plant ionic homeostasis: implications for abiotic stress tolerance
    Huang, Xin
    Tanveer, Mohsin
    Min, Yu
    Shabala, Sergey
    JOURNAL OF EXPERIMENTAL BOTANY, 2022, 73 (17) : 5886 - 5902
  • [35] Application of chitosan on plant responses with special reference to abiotic stress
    Hidangmayum, Akash
    Dwivedi, Padmanabh
    Katiyar, Deepmala
    Hemantaranjan, Akhouri
    PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS, 2019, 25 (02) : 313 - 326
  • [36] Induction of abiotic stress tolerance by salicylic acid signaling
    Horvath, Eszter
    Szalai, Gabriella
    Janda, Tibor
    JOURNAL OF PLANT GROWTH REGULATION, 2007, 26 (03) : 290 - 300
  • [37] The roles of HD-ZIP proteins in plant abiotic stress tolerance
    Li, Yuxia
    Yang, Zongran
    Zhang, Yuanyuan
    Guo, Jinjiao
    Liu, Lili
    Wang, Chengfeng
    Wang, Baoshan
    Han, Guoliang
    FRONTIERS IN PLANT SCIENCE, 2022, 13
  • [38] Induction of Abiotic Stress Tolerance by Salicylic Acid Signaling
    Eszter Horváth
    Gabriella Szalai
    Tibor Janda
    Journal of Plant Growth Regulation, 2007, 26 : 290 - 300
  • [39] RNA regulation in plant abiotic stress responses
    Nakaminami, Kentaro
    Matsui, Akihiro
    Shinozaki, Kazuo
    Seki, Motoaki
    BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS, 2012, 1819 (02): : 149 - 153
  • [40] The molecular mechanism of plasma membrane H+-ATPases in plant responses to abiotic stress
    Li, Jing
    Guo, Yan
    Yang, Yongqing
    JOURNAL OF GENETICS AND GENOMICS, 2022, 49 (08) : 715 - 725