Methylglyoxal: An Emerging Signaling Molecule in Plant Abiotic Stress Responses and Tolerance

被引:179
|
作者
Hoque, Tahsina S. [1 ]
Hossain, Mohammad A. [2 ]
Mostofa, Mohammad G. [3 ]
Burritt, David J. [4 ]
Fujita, Masayuki [5 ]
Tran, Lam-Son P. [6 ,7 ,8 ]
机构
[1] Bangladesh Agr Univ, Dept Soil Sci, Mymensingh, Bangladesh
[2] Bangladesh Agr Univ, Dept Genet & Plant Breeding, Mymensingh, Bangladesh
[3] Bangabandhu Sheikh Mujibur Rahman Agr Univ, Dept Biochem & Mol Biol, Gazipur, Bangladesh
[4] Univ Otago, Dept Bot, Dunedin, New Zealand
[5] Kagawa Univ, Fac Agr, Dept Appl Biol Sci, Lab Plant Stress Responses, Takamatsu, Kagawa 760, Japan
[6] Ton Duc Thang Univ, Plant Abiot Stress Res Grp, Ho Chi Minh City, Vietnam
[7] Ton Duc Thang Univ, Fac Sci Appl, Ho Chi Minh City, Vietnam
[8] RIKEN, Signaling Pathway Res Unit, Ctr Sustainable Resource Sci, Yokohama, Kanagawa, Japan
来源
FRONTIERS IN PLANT SCIENCE | 2016年 / 7卷
关键词
abiotic stress; glyoxalases; methylglyoxal; reactive oxygen species; signaling crosstalk; stress tolerance mechanism; SATIVA L. SEEDLINGS; GLYOXALASE-I GENE; ANTIOXIDANT DEFENSE; ABSCISIC-ACID; ORYZA-SATIVA; SALT TOLERANCE; DETOXIFICATION SYSTEMS; ARABIDOPSIS-THALIANA; HYDROGEN-PEROXIDE; OXIDATIVE DAMAGE;
D O I
10.3389/fpls.2016.01341
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
The oxygenated short aldehyde methylglyoxal (MG) is produced in plants as a by-product of a number of metabolic reactions, including elimination of phosphate groups from glycolysis intermediates dihydroxyacetone phosphate and glyceraldehyde 3-phosphate. MG is mostly detoxified by the combined actions of the enzymes glyoxalase I and glyoxalase II that together with glutathione make up the glyoxalase system. Under normal growth conditions, basal levels of MG remain low in plants; however, when plants are exposed to abiotic stress, MG can accumulate to much higher levels. Stress-induced MG functions as a toxic molecule, inhibiting different developmental processes, including seed germination, photosynthesis and root growth, whereas MG, at low levels, acts as an important signaling molecule, involved in regulating diverse events, such as cell proliferation and survival, control of the redox status of cells, and many other aspects of general metabolism and cellular homeostases. MG can modulate plant stress responses by regulating stomatal opening and closure, the production of reactive oxygen species, cytosolic calcium ion concentrations, the activation of inward rectifying potassium channels and the expression of many stress-responsive genes. MG appears to play important roles in signal transduction by transmitting and amplifying cellular signals and functions that promote adaptation of plants growing under adverse environmental conditions. Thus, MG is now considered as a potential biochemical marker for plant abiotic stress tolerance, and is receiving considerable attention by the scientific community. In this review, we will summarize recent findings regarding MG metabolism in plants under abiotic stress, and evaluate the concept of MG signaling. In addition, we will demonstrate the importance of giving consideration to MG metabolism and the glyoxalase system, when investigating plant adaptation and responses to various environmental stresses.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] Seed Priming with Nanoparticles: An Emerging Technique for Improving Plant Growth, Development, and Abiotic Stress Tolerance
    Rhaman, Mohammad Saidur
    Tania, Shaila Shermin
    Imran, Shahin
    Rauf, Farjana
    Kibria, Mohammad Golam
    Ye, Wenxiu
    Hasanuzzaman, Mirza
    Murata, Yoshiyuki
    JOURNAL OF SOIL SCIENCE AND PLANT NUTRITION, 2022, 22 (04) : 4047 - 4062
  • [22] Interactions of Polyamines and Phytohormones in Plant Response to Abiotic Stress
    Napieraj, Natalia
    Janicka, Malgorzata
    Reda, Malgorzata
    PLANTS-BASEL, 2023, 12 (05):
  • [23] The role of carbon monoxide signaling in the responses of plants to abiotic stresses
    He, Huyi
    He, Longfei
    NITRIC OXIDE-BIOLOGY AND CHEMISTRY, 2014, 42 : 40 - 43
  • [24] ROLE OF NITRIC OXIDE IN PLANT RESPONSE TO ABIOTIC STRESS
    Grzegorzewska, Weronika
    Jaworski, Krzysztof
    Szmidt-Jaworska, Adriana
    POSTEPY BIOLOGII KOMORKI, 2009, 36 (04) : 663 - 678
  • [25] Plant protease as regulator and signaling molecule for enhancing environmental stress-tolerance
    Sharma, Punam
    Gayen, Dipak
    PLANT CELL REPORTS, 2021, 40 (11) : 2081 - 2095
  • [26] Advances in Chemical Priming to Enhance Abiotic Stress Tolerance in Plants
    Sako, Kaori
    Huong Mai Nguyen
    Seki, Motoaki
    PLANT AND CELL PHYSIOLOGY, 2020, 61 (12) : 1995 - 2003
  • [27] Hitting the Wall-Sensing and Signaling Pathways Involved in Plant Cell Wall Remodeling in Response to Abiotic Stress
    Novakovic, Lazar
    Guo, Tingting
    Bacic, Antony
    Sampathkumar, Arun
    Johnson, Kim L.
    PLANTS-BASEL, 2018, 7 (04):
  • [28] Stress-induced senescence and plant tolerance to abiotic stress
    Sade, Nir
    Rubio-Wilhelmi, Maria del Mar
    Umnajkitikorn, Kamolchanok
    Blumwald, Eduardo
    JOURNAL OF EXPERIMENTAL BOTANY, 2018, 69 (04) : 845 - 853
  • [29] Functions and mechanisms of the CBL-CIPK signaling system in plant response to abiotic stress
    Li, Ruifen
    Zhang, Junwen
    Wei, Jianhua
    Wang, Hongzhi
    Wang, Yanzhen
    Ma, Rongcai
    PROGRESS IN NATURAL SCIENCE-MATERIALS INTERNATIONAL, 2009, 19 (06) : 667 - 676
  • [30] Nitric oxide in plants: an insight on redox activity and responses toward abiotic stress signaling
    Khator, Khushboo
    Parihar, Suman
    Jasik, Jan
    Shekhawat, Gyan Singh
    PLANT SIGNALING & BEHAVIOR, 2024, 19 (01)