The Importance of Spin State in Chiral Supramolecular Electronics

被引:7
作者
Garcia, Ana M. [1 ]
Martinez, Gabriel [1 ]
Ruiz-Carretero, Amparo [1 ]
机构
[1] Univ Strasbourg, Inst Charles Sadron, CNRS, Strasbourg, France
关键词
supramolecular chirality; self-assembly; CISS effect; spin state; supramolecular electronics; HETEROJUNCTION SOLAR-CELLS; CHARGE-TRANSPORT; SELECTIVITY; POLARIZATION; EFFICIENCY; SUBSTITUENTS; SPINTRONICS; MONOLAYERS; MOLECULES; CHEMISTRY;
D O I
10.3389/fchem.2021.722727
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The field of spintronics explores how magnetic fields can influence the properties of organic and inorganic materials by controlling their electron's spins. In this sense, organic materials are very attractive since they have small spin-orbit coupling, allowing long-range spin-coherence over times and distances longer than in conventional metals or semiconductors. Usually, the small spin-orbit coupling means that organic materials cannot be used for spin injection, requiring ferromagnetic electrodes. However, chiral molecules have been demonstrated to behave as spin filters upon light illumination in the phenomenon described as chirality-induced spin selectivity (CISS) effect. This means that electrons of certain spin can go through chiral assemblies of molecules preferentially in one direction depending on their handedness. This is possible because the lack of inversion symmetry in chiral molecules couples with the electron's spin and its linear momentum so the molecules transmit the one preferred spin. In this respect, chiral semiconductors have great potential in the field of organic electronics since when charge carriers are created, a preferred spin could be transmitted through a determined handedness structure. The exploration of the CISS effect in chiral supramolecular semiconductors could add greatly to the efforts made by the organic electronics community since charge recombination could be diminished and charge transport improved when the spins are preferentially guided in one specific direction. This review outlines the advances in supramolecular chiral semiconductors regarding their spin state and its influence on the final electronic properties.
引用
收藏
页数:9
相关论文
共 50 条
[31]   Spin Filtering Along Chiral Polymers [J].
Mishra, Suryakant ;
Mondal, Amit Kumar ;
Smolinsky, Eilam Z. B. ;
Naaman, Ron ;
Maeda, Katsuhiro ;
Nishimura, Tatsuya ;
Taniguchi, Tsuyoshi ;
Yoshida, Takumu ;
Takayama, Kokoro ;
Yashima, Eiji .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2020, 59 (34) :14671-14676
[32]   Theory of Chiral Induced Spin Selectivity [J].
Dalum, Sakse ;
Hedegard, Per .
NANO LETTERS, 2019, 19 (08) :5253-5259
[33]   Spin Properties of Chiral SiC Nanotubes [J].
D'yachkov, P. N. ;
Kulyamin, P. A. .
RUSSIAN JOURNAL OF INORGANIC CHEMISTRY, 2024, 69 (09) :1399-1406
[34]   Advances in Supramolecular Electronics - From Randomly Self-assembled Nanostructures to Addressable Self-Organized Interconnects [J].
Moulin, Emilie ;
Cid, Juan-Jose ;
Giuseppone, Nicolas .
ADVANCED MATERIALS, 2013, 25 (03) :477-487
[35]   Rewritable Binary Recording of the Photon Spin State in Chiral Liquid Crystals [J].
Bruni, Nicolas ;
Loussert, Charles ;
Rafayelyan, Mushegh ;
Orlova, Tetiana ;
Coursault, Delphine ;
Brasselet, Etienne .
PHYSICAL REVIEW LETTERS, 2025, 134 (22) :223804
[36]   Wrapping Chiral Nanoribbons into Coiled and Condensed Microstructures in Supramolecular Hydrogels [J].
Wang, Fang ;
Qiu, Huibin ;
Feng, Chuanliang .
ADVANCED FUNCTIONAL MATERIALS, 2020, 30 (34)
[37]   Assembly and Chiral Memory Effects of Dynamic Macroscopic Supramolecular Helices [J].
Yuan, Tianyu ;
Sun, Zhimin ;
Mu, Anthony U. ;
Zeng, Minxiang ;
Kalin, Alexander J. ;
Cheng, Zhengdong ;
Olson, Mark A. ;
Fang, Lei .
CHEMISTRY-A EUROPEAN JOURNAL, 2018, 24 (62) :16553-16557
[38]   Control of carbon nanotube handedness using a supramolecular chiral surface [J].
Picaud, F. ;
Herlem, G. ;
Girardet, C. .
JOURNAL OF CHEMICAL PHYSICS, 2011, 135 (15)
[39]   Supramolecular Dielectric for Low Voltage Organic Electronics [J].
Tsui, Hei-Chit Leo ;
Steinke, Joachim ;
Vaklev, Nikolay ;
Campbell, Alasdair .
NANOTECHNOLOGY 2011: ELECTRONICS, DEVICES, FABRICATION, MEMS, FLUIDICS AND COMPUTATIONAL, NSTI-NANOTECH 2011, VOL 2, 2011, :438-440
[40]   Cold denaturation induces inversion of dipole and spin transfer in chiral peptide monolayers [J].
Eckshtain-Levi, Meital ;
Capua, Eyal ;
Refaely-Abramson, Sivan ;
Sarkar, Soumyajit ;
Gavrilov, Yulian ;
Mathew, Shinto P. ;
Paltiel, Yossi ;
Levy, Yaakov ;
Kronik, Leeor ;
Naaman, Ron .
NATURE COMMUNICATIONS, 2016, 7