A Maximum Likelihood Estimation Framework for the Exponential Differential Equation Model

被引:0
作者
Mahmoud, Ahmed Adly [1 ]
Dass, Sarat Chandra [1 ]
Muthuvalu, Mohana S. [2 ]
机构
[1] Univ Teknol PETRONAS, Fundamental & Appl Sci Dept, Fac Sci & Informat Technol, Tronoh 31750, Perak, Malaysia
[2] Univ Teknol PETRONAS, Dept Petr Engn, Fac Geosci & Petr Engn, Tronoh 31750, Perak, Malaysia
来源
2015 INTERNATIONAL CONFERENCE ON COMPUTER, CONTROL, INFORMATICS AND ITS APPLICATIONS (IC3INA) | 2015年
关键词
Ordinary Differential Equations (ODEs); Delay Differential Equations (DDEs); Exponential Delay Differential Equation Model (EDDEM); Maximum Likelihood Estimation (MLE); PARAMETER-ESTIMATION; DYNAMIC-MODELS; POPULATIONS;
D O I
暂无
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In this paper we propose the maximum likelihood method of estimation for Delay Differential Equation Model governed by unknown delay and other parameters of interest. As an example we consider the Exponential Differential Equation Model. A grid based estimation framework is proposed. Our methodology estimates correctly the delay parameter as well as the initial starting value of the dynamical system based on simulation data.
引用
收藏
页码:23 / 27
页数:5
相关论文
共 50 条
  • [21] Maximum Likelihood Frequency Estimation in Smart Grid Applications
    Choqueuse, Vincent
    Elbouchikhi, Elhoussin
    Benbouzid, Mohamed
    2015 IEEE 24TH INTERNATIONAL SYMPOSIUM ON INDUSTRIAL ELECTRONICS (ISIE), 2015, : 1339 - 1344
  • [22] Implementing and evaluating the nested maximum likelihood estimation technique
    Cousineau, Denis
    TUTORIALS IN QUANTITATIVE METHODS FOR PSYCHOLOGY, 2007, 3 (01): : 8 - 13
  • [23] Maximum-likelihood estimation of Rician distribution parameters
    Sijbers, J
    den Dekker, AJ
    Scheunders, P
    Van Dyck, D
    IEEE TRANSACTIONS ON MEDICAL IMAGING, 1998, 17 (03) : 357 - 361
  • [24] Maximum Likelihood Parameter Estimation of CNC System Reliability
    Gu, Yan
    Wang, Yiqiang
    Zhou, Xiaoqin
    Yuan, Xiuhua
    MECHANICAL STRUCTURES AND SMART MATERIALS, 2014, 487 : 282 - +
  • [25] Parameter estimation using polynomial chaos and maximum likelihood
    Chen-Charpentier, Benito
    Stanescu, Dan
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2014, 91 (02) : 336 - 346
  • [26] Maximum Likelihood Estimation for Mixed Fractional Vasicek Processes
    Cai, Chun-Hao
    Huang, Yin-Zhong
    Sun, Lin
    Xiao, Wei-Lin
    FRACTAL AND FRACTIONAL, 2022, 6 (01)
  • [27] Maximum likelihood estimation for small noise multiscale diffusions
    Spiliopoulos K.
    Chronopoulou A.
    Statistical Inference for Stochastic Processes, 2013, 16 (3) : 237 - 266
  • [28] Maximum Likelihood Recursive Extended Least Squares Estimation for Multivariate Equation-Error Moving Average Systems
    Liu, Lijuan
    Ji, Yan
    Ding, Feng
    Li, Junhong
    PROCEEDINGS OF 2018 10TH INTERNATIONAL CONFERENCE ON MODELLING, IDENTIFICATION AND CONTROL (ICMIC), 2018,
  • [29] Noise-Scaled Euclidean Distance: A Metric for Maximum Likelihood Estimation of the PV Model Parameters
    Batzelis, Efstratios
    Blanes, Jose M.
    Javier Toledo, F.
    Galiano, Vicente
    IEEE JOURNAL OF PHOTOVOLTAICS, 2022, 12 (03): : 815 - 826
  • [30] Making linear prediction perform like maximum likelihood in Gaussian autoregressive model parameter estimation
    Candan, Cagatay
    SIGNAL PROCESSING, 2020, 166 (166)