Thermal modulation of intracellular drug distribution using thermoresponsive polymeric micelles

被引:40
作者
Nakayama, M.
Chung, J. E.
Miyazaki, T.
Yokoyama, M.
Sakai, K.
Okano, T.
机构
[1] Tokyo Womens Med Univ, Inst Adv Biomed Engn & Sci, Shinjuku Ku, Tokyo 1628666, Japan
[2] Waseda Univ, Dept Chem, Shinjuku Ku, Tokyo 1698555, Japan
[3] Kanagawa Acad Sci & Technol, Yokoyama Nano Med Polymers Proj, Kanagawa 2130012, Japan
关键词
poly(N-isopropylacrylamide); thermoresponse; polymeric micelles; doxorubicin; intracellular drug distribution;
D O I
10.1016/j.reactfunctpolym.2007.07.056
中图分类号
O69 [应用化学];
学科分类号
081704 ;
摘要
Intracellular distribution of free doxorubicin (DOX) or DOX-loaded in polymeric micelles with thermoresponsive outer shells of poly(N-isopropylacrylamide) or its copolymers in cultured human breast cancer cells (MCF-7) were investigated by fluorescence and confocal laser scanning microscopy. Free DOX accumulated rapidly and selectively in cell nuclei, independent of temperature changes. In contrast to free drugs, the intracellular distribution of DOX-loaded in the thermoresponsive polymeric micelles was significantly affected by temperature changes across lower critical solution temperature (LCST) of the micelles. Above the micelle LCST, DOX delivered by the micelles was localized uniformly inside of MCF-7 cells. By contrast, the amount of DOX delivered to MCF-7 cells drastically decreased below the micelle LCST due to minimal interaction of the micelles with cell membrane surfaces. These results clearly showed that the mechanism of the intracellular drug localization was different between free drugs and DOX-loaded in the micelles. The thermoresponsive micelles aggressively interacted with the cells and carried DOX into the cells via triggered phase transition of the outer shells. In addition, much lower accumulation of free DOX was observed in the resistant cells compared to its parent sensitive MCF-7 due to the resistant mechanism. Of interest, DOX accumulation in the resistant cells was almost in the same level as with MCF-7 (sensitive) cells for the micelle system above the LCST. (c) 2007 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1398 / 1407
页数:10
相关论文
共 30 条
[1]  
AKIMOTO J, UNPUB
[2]   Thermo-responsive polymer nanoparticles with a core-shell micelle structure as site-specific drug carriers [J].
Cammas, S ;
Suzuki, K ;
Sone, C ;
Sakurai, Y ;
Kataoka, K ;
Okano, T .
JOURNAL OF CONTROLLED RELEASE, 1997, 48 (2-3) :157-164
[3]   Thermo-responsive drug delivery from polymeric micelles constructed using block copolymers of poly(N-isopropylacrylamide) and poly(butylmethacrylate) [J].
Chung, JE ;
Yokoyama, M ;
Yamato, M ;
Aoyagi, T ;
Sakurai, Y ;
Okano, T .
JOURNAL OF CONTROLLED RELEASE, 1999, 62 (1-2) :115-127
[4]   Effect of molecular architecture of hydrophobically modified poly(N-isopropylacrylamide) on the formation of thermoresponsive core-shell micellar drug carriers [J].
Chung, JE ;
Yokoyama, M ;
Aoyagi, T ;
Sakurai, Y ;
Okano, T .
JOURNAL OF CONTROLLED RELEASE, 1998, 53 (1-3) :119-130
[5]   Reversibly thermo-responsive alkyl-terminated poly(N-isopropylacrylamide) core-shell micellar structures [J].
Chung, JE ;
Yokoyama, M ;
Suzuki, K ;
Aoyagi, T ;
Sakurai, Y ;
Okano, T .
COLLOIDS AND SURFACES B-BIOINTERFACES, 1997, 9 (1-2) :37-48
[6]  
Duncan R, 1996, STP PHARMA SCI, V6, P237
[7]   Controlled and targeted tumor chemotherapy by micellar-encapsulated drug and ultrasound [J].
Gao, ZG ;
Fain, HD ;
Rapoport, N .
JOURNAL OF CONTROLLED RELEASE, 2005, 102 (01) :203-222
[8]  
Heskins M., 1968, J MACROMOL SCI CHEM, V2, P1441, DOI [10.1080/10601326808051910, DOI 10.1080/10601326808051910]
[9]   Differences in the intracellular fate of free and polymer-bound doxorubicin [J].
Hovorka, O ;
St'astny, M ;
Etrych, T ;
Subr, V ;
Strohalm, J ;
Ulbrich, K ;
Ríhová, B .
JOURNAL OF CONTROLLED RELEASE, 2002, 80 (1-3) :101-117
[10]   Size-dependent extravasation and interstitial localization of polyethyleneglycol liposomes in solid tumor-bearing mice [J].
Ishida, O ;
Maruyama, K ;
Sasaki, K ;
Iwatsuru, M .
INTERNATIONAL JOURNAL OF PHARMACEUTICS, 1999, 190 (01) :49-56