Curvatures, generic Galois groups and D-groupoid of a q-difference system

被引:8
作者
Di Vizio, Lucia [1 ]
Hardouin, Charlotte [2 ]
机构
[1] Inst Math Jussieu Topol & Geometrie Algebr, F-75251 Paris 05, France
[2] Inst Math Toulouse, F-31062 Toulouse, France
关键词
ARITHMETIC THEORY; EQUATIONS; CONJECTURE;
D O I
10.1016/j.crma.2010.08.001
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Combining the results in Hendriks (1996) [6], Di Vizio (2002) [1] and Di Vizio, Hardouin [2], we prove that the generic, algebraic or differential, Galois group of a q-difference modules over C(x) can always be characterized in terms of v-curvatures, in the spirit of the work of Katz (1982) In We use this result to prove that the Malgrange-Granier D-groupoid of a linear q-difference system coincide, in a sense that we specify below, with a sort of Kolchin closure of the dynamics of the linear q-difference system and that the group that fixes a transversal, coincide with the differential generic Galois group. (C) 2010 Academie des sciences. Publie par Elsevier Masson SAS. Thus droits reserves.
引用
收藏
页码:951 / 954
页数:4
相关论文
共 11 条
[1]   Arithmetic theory of q-difference equations -: The q-analogue of Grothendieck-Katz's conjecture on p-curvatures [J].
Di Vizio, L .
INVENTIONES MATHEMATICAE, 2002, 150 (03) :517-578
[2]  
DIVIZIO L, ARXIV10024839
[3]  
GRANIER A, 2009, ANN I FOURI IN PRESS
[4]   A local Galois D-groupoid for fuchsian q-difference systems [J].
Granier, Anne .
COMPTES RENDUS MATHEMATIQUE, 2010, 348 (5-6) :263-265
[5]   Differential Galois theory of linear difference equations [J].
Hardouin, Charlotte ;
Singer, Michael F. .
MATHEMATISCHE ANNALEN, 2008, 342 (02) :333-377
[6]  
Hendriks P., 1996, THESIS U GRONINGEN
[7]  
Kaplansky I., 1957, INTRO DIFFERENTIAL A
[8]  
KATZ NM, 1982, B SOC MATH FR, V110, P203
[9]  
MALGRANGE B., 2001, Enseign. Math., V38, P465
[10]  
MINCHENKO A, ARXIV10050042