The topology of arrangements of ideal type

被引:1
作者
Amend, Nils [1 ]
Roehrle, Gerhard [2 ]
机构
[1] Leibniz Univ Hannover, Inst Algebra Zahlentheorie & Diskrete Math, Fak Math & Phys, Hannover, Germany
[2] Ruhr Univ Bochum, Fak Math, Bochum, Germany
关键词
D O I
10.2140/agt.2019.19.1341
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In 1962, Fadell and Neuwirth showed that the configuration space of the braid arrangement is aspherical. Having generalized this to many real reflection groups, Brieskorn conjectured this for all finite Coxeter groups. This in turn follows from Deligne's seminal work from 1972, where he showed that the complexification of every real simplicial arrangement is a K(pi, 1)-arrangement. We study the K(pi, 1)-property for a certain class of subarrangements of Weyl arrangements, the so-called arrangements of ideal type A(I). These stem from ideals I in the set of positive roots of a reduced root system. We show that the K(pi, 1)-property holds for all arrangements A(I) if the underlying Weyl group is classical and that it extends to most of the A(I) if the underlying Weyl group is of exceptional type. Conjecturally this holds for all A(I). In general, the A(I) are neither simplicial nor is their complexification of fiber type.
引用
收藏
页码:1341 / 1358
页数:18
相关论文
共 22 条
[1]   The freeness of ideal subarrangements of Weyl arrangements [J].
Abe, T. ;
Barakat, M. ;
Cuntz, M. ;
Hoge, T. ;
Terao, H. .
JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2016, 18 (06) :1339-1348
[2]  
[Anonymous], 1973, Lecture Notes in Math.
[3]   Coxeter and crystallographic arrangements are inductively free [J].
Barakat, Mohamed ;
Cuntz, Michael .
ADVANCES IN MATHEMATICS, 2012, 229 (01) :691-709
[4]  
Bourbaki N., 1971, ACTUAL SCI IND, V1285
[5]   Monodromy of fiber-type arrangements and orbit configuration spaces [J].
Cohen, DC .
FORUM MATHEMATICUM, 2001, 13 (04) :505-530
[6]  
Cuntz M, 2019, INT J ALGEBRA COMPUT
[7]   Finite Weyl groupoids [J].
Cuntz, Michael ;
Heckenberger, Istvan .
JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2015, 702 :77-108
[8]   GENERALIZED BRAID GROUPS [J].
DELIGNE, P .
INVENTIONES MATHEMATICAE, 1972, 17 (04) :273-&
[9]  
Fadell E., 1962, Math. Scand., V10, P111
[10]   THE LOWER CENTRAL SERIES OF A FIBER-TYPE ARRANGEMENT [J].
FALK, M ;
RANDELL, R .
INVENTIONES MATHEMATICAE, 1985, 82 (01) :77-88