An Application of the Arithmetic of Elliptic Curves to the Class Number Problem for Quadratic Fields

被引:4
作者
Iizuka, Yoshichika [1 ]
Konomi, Yutaka [2 ]
Nakano, Shin [1 ]
机构
[1] Gakushuin Univ, Dept Math, Toshima Ku, Tokyo 1718588, Japan
[2] Meijo Univ, Dept Math, Tempaku Ku, Nagoya, Aichi 4688502, Japan
关键词
class number; quadratic field; elliptic curve; POINTS; PAIRS;
D O I
10.3836/tjm/1502179314
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let l be the prime 3, 5 or 7, and let m(1), m(2), n(1) and n(2) be non-zero rational numbers. We construct an infinite family of pairs of distinct quadratic fields Q(root m(1)D + n(1)) and Q(root m(2)D + n(2)) with D is an element of Q such that both class numbers are divisible by l, using rational points on an elliptic curve with positive Mordell-Weil rank to parametrize such quadratic fields.
引用
收藏
页码:33 / 47
页数:15
相关论文
共 7 条
[1]   THEORIES OF FINITENESS FOR ABELIAN-VARIETIES OVER NUMBER-FIELDS [J].
FALTINGS, G .
INVENTIONES MATHEMATICAE, 1983, 73 (03) :349-366
[2]   On the class number divisibility of pairs of quadratic fields obtained from points on elliptic curves [J].
Iizuka, Yoshichika ;
Konomi, Yutaka ;
Nakano, Shin .
JOURNAL OF THE MATHEMATICAL SOCIETY OF JAPAN, 2016, 68 (02) :899-915
[3]   An infinite family of pairs of quadratic fields Q(√D) and Q(√mD) whose class numbers are both divisible by 3 [J].
Komatsu, T .
ACTA ARITHMETICA, 2002, 104 (02) :129-136
[4]  
SATO A., 2010, INTERDISCIP INF SCI, V16, P39
[5]  
Sato A, 2008, OSAKA J MATH, V45, P375
[6]  
Sato A, 2011, OSAKA J MATH, V48, P809
[7]  
Silverman JH, 2009, GRAD TEXTS MATH, V106, pXVII