Geological, geochronological, and H-O isotopic constraints on the genesis of the Tongjing Cu-Au deposit in the Ningwu basin, east China

被引:4
|
作者
Yu, Jin-Jie [1 ]
Wang, Tie-Zhu [1 ]
Che, Lin-Rui [2 ]
Lu, Bang-Cheng [3 ]
机构
[1] Chinese Acad Geol Sci, Inst Mineral Resources, MLR Key Lab Metallogeny & Mineral Assessment, Beijing 100037, Peoples R China
[2] Sinomine Resource Explorat Co Ltd, Beijing 100089, Peoples R China
[3] China Univ Geosci, Fac Geosci, Beijing 100083, Peoples R China
基金
中国国家自然科学基金;
关键词
Ore-forming stage; Hydrogen and oxygen isotopes; LA-MC-ICP-MS zircon U-Pb dating 40Ar-39Ar age of sericite; Genetic model; Tongjing Cu-Au deposit; Ningwu basin; YANGTZE-RIVER VALLEY; MAGNETITE-APATITE DEPOSITS; MOLYBDENITE RE-OS; U-PB; FLUID INCLUSION; ANHUI PROVINCE; IRON DEPOSITS; GOLD DEPOSIT; ZIRCON; PORPHYRY;
D O I
10.1016/j.oregeorev.2016.04.005
中图分类号
P5 [地质学];
学科分类号
0709 ; 081803 ;
摘要
The Tongjing Cu-Au deposit is a medium-sized deposit within the Ningwu volcanic basin, east China, and is hosted by Cretaceous volcanic rocks of the Dawangshan and Niangniangshan Formations. The veined and lenticular Cu-Au orebodies are spatially and temporally related to the volcanic and subvolcanic rocks of the Niangniangshan Formation in the ore district The wall-rock alteration is dominated by silicification, siderite alteration, carbonation, sericitization, chloritization, and kaolinization. On the basis of field evidence and petrographic observations, two stages of mineralization are recognized: (1) a siderite-quartz-sulfide stage (Stage 1) associated with the formation of chalcopyrite and pyrite in a quartz and siderite gangue; and (2) a quartz-bornite stage (Stage 2) cutting the Stage 1 phases. Stage 1 is the main mineralization stage. Quartz that formed in Stage 1 has delta O-18(H2O) values of -4.3%. to 3.5 parts per thousand with delta D values of fluid inclusion waters of -97.1 parts per thousand to -49.9 parts per thousand, indicating that the ore-forming fluids were derived from early magmatic fluids and may have experienced oxygen isotopic exchange with meteoric water during Stage 1 mineralization. LA-MC-ICP-MS zircon U-Pb dating of the mineralization-related nosean-bearing phonolite and nosean-bearing phonolitic brecciated tuff at Tongjing yields ages of 129.8 +/- 0.5 Ma and 128.9 +/- 1.1 Ma, respectively. These results are interpreted as the crystallization age of the volcanic rocks of the Niangniangshan Formation. A hydro thermal sericite sample associated with Cu-Au mineralization at Tongjing yields a plateau 40Ar-39Ar age of 131.3 +/- 1.3 Ma. These results confirm a genetic link between the volcanisrn and associated Cu-Au mineralization. The Tongjing Cu-Au deposit in the Ningwu basin is genetically and possibly tectonically similar to alkaline intrusion-related gold deposits elsewhere in the world. (C) 2016 Elsevier B.V. All rights reserved. The Tongjing Cu-Au deposit is a medium-sized deposit within the Ningwu volcanic basin, east China, and is hosted by Cretaceous volcanic rocks of the Dawangshan and Niangniangshan Formations. The veined and lenticular Cu-Au orebodies are spatially and temporally related to the volcanic and subvolcanic rocks of the Niangniangshan Formation in the ore district The wall-rock alteration is dominated by silicification, siderite alteration, carbonation, sericitization, chloritization, and kaolinization. On the basis of field evidence and petrographic observations, two stages of mineralization are recognized: (1) a siderite-quartz-sulfide stage (Stage 1) associated with the formation of chalcopyrite and pyrite in a quartz and siderite gangue; and (2) a quartz-bornite stage (Stage 2) cutting the Stage 1 phases. Stage 1 is the main mineralization stage. Quartz that formed in Stage 1 has delta O-18(H2O) values of -4.3%. to 3.5 parts per thousand with delta D values of fluid inclusion waters of -97.1 parts per thousand to -49.9 parts per thousand, indicating that the ore-forming fluids were derived from early magmatic fluids and may have experienced oxygen isotopic exchange with meteoric water during Stage 1 mineralization. LA-MC-ICP-MS zircon U-Pb dating of the mineralization-related nosean-bearing phonolite and nosean-bearing phonolitic brecciated tuff at Tongjing yields ages of 129.8 +/- 0.5 Ma and 128.9 +/- 1.1 Ma, respectively. These results are interpreted as the crystallization age of the volcanic rocks of the Niangniangshan Formation. A hydro thermal sericite sample associated with Cu-Au mineralization at Tongjing yields a plateau 40Ar-39Ar age of 131.3 +/- 1.3 Ma. These results confirm a genetic link between the volcanisrn and associated Cu-Au mineralization. The Tongjing Cu-Au deposit in the Ningwu basin is genetically and possibly tectonically similar to alkaline intrusion-related gold deposits elsewhere in the world. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:346 / 360
页数:15
相关论文
共 50 条
  • [1] Geological, fluid inclusion, H-O isotopic, and U-Pb geochronological constraints on the genesis of the Xiahuolong gold deposit, southern Jilin Province, NE China
    Bai, Chenglin
    Sun, Jinggui
    Xie, Guiqing
    Zhang, Tingting
    Liu, Yanpeng
    Chang, Xiang
    ORE GEOLOGY REVIEWS, 2024, 164
  • [2] Genesis of the Yanghuidongzi Cu deposit, NE China: Constraints from H-O-Pb isotopic compositions and geochronological study
    Zhang, Peng
    Zhao, Yan
    Li, Xiaochun
    Kou, Lin-lin
    Bi, Zhong-wei
    Han, Ren-ping
    ORE GEOLOGY REVIEWS, 2021, 135
  • [3] Fluid inclusions and H-O isotopic compositions in the Washan and Dongshan iron deposits, Ningwu basin, China
    Ma Fang
    Jiang ShaoYong
    Jiang YaoHui
    Ni Pei
    Ling HongFei
    ACTA PETROLOGICA SINICA, 2006, 22 (10) : 2581 - 2589
  • [4] Genesis of the Meishan iron oxide-apatite deposit in the Ningwu Basin, eastern China: Constraints from apatite chemistry
    Yu, Jin-Jie
    Chen, Bao-Yun
    Che, Lin-Rui
    Wang, Tie-Zhu
    Liu, Shuai-Jie
    GEOLOGICAL JOURNAL, 2020, 55 (02) : 1450 - 1467
  • [5] Fluid inclusion, H-O isotope and Pb-Pb age constraints on the genesis of the Yongping copper deposit, South China
    Zhu, Xiao-Ting
    Ni, Pei
    Wang, Guo-Guang
    Cai, Yi-Tao
    Chen, Hui
    Pan, Jun-Yi
    JOURNAL OF GEOCHEMICAL EXPLORATION, 2016, 171 : 55 - 70
  • [6] Copper isotopic compositions of the Zijinshan high-sulfidation epithermal Cu-Au deposit, South China: Implications for deposit origin
    Wu, Li-Yan
    Hu, Rui-Zhong
    Li, Xiao-Feng
    Liu, Sheng-Ao
    Tang, Yan-Wen
    Tang, Yong-Yong
    ORE GEOLOGY REVIEWS, 2017, 83 : 191 - 199
  • [7] Genesis of the Yi'nan Tongjing Gold-Copper Skarn Deposit, Luxi District, North China Craton: Evidence from Fluid Inclusions and H-O Isotopes
    Cai, Wenyan
    Liu, Xiao
    Zhang, Zhaolu
    Gao, Jilei
    Lei, Ming
    Cui, Qingyi
    Ma, Ming
    Li, Yadong
    Song, Yingxin
    MINERALS, 2023, 13 (10)
  • [8] The multiple mineralizations and geodynamic settings of the Laozuoshan Cu-Au deposit in the Jiamusi Massif, NE China: Zircon U-Pb geochronological, elemental and Hf isotopic geochemical evidence
    Bai, Cheng-lin
    Sun, Jing-gui
    Zhao, Chun-tao
    Qin, Ke-zhang
    Liu, Yang
    Chu, Xiao-lei
    Xu, Zhi-kai
    Li, Yi-xin
    ORE GEOLOGY REVIEWS, 2021, 137
  • [9] Geology, fluid inclusion, 40Ar-39Ar geochronology, and isotope constraints on the ore genesis of the Ershiyizhan Cu-Au deposit, Heilongjiang Province, China
    Wang, Yuan-chao
    Zhao, Yuan-yi
    Cheng, Xian-da
    ORE GEOLOGY REVIEWS, 2024, 168
  • [10] Petrogenesis of Dongguashan skarn-porphyry Cu-Au deposit related intrusion in the Tongling district, eastern China: Geochronological, mineralogical, geochemical and Hf isotopic evidence
    Wang, Shi-Wei
    Zhou, Tao-Fa
    Yuan, Feng
    Fan, Yu
    Zhang, Le-Jun
    Song, Yu-Long
    ORE GEOLOGY REVIEWS, 2015, 64 : 53 - 70