Decay rate of solutions to 3D Navier-Stokes-Voigt equations in Hm spaces

被引:16
作者
Cung The Anh [1 ]
Pham Thi Trang [1 ]
机构
[1] Hanoi Natl Univ Educ, Dept Math, 136 Xuan Thuy, Hanoi, Vietnam
关键词
Navier-Stokes-Voigt equations; Decay rate; Fourier Splitting Method; Inductive argument; LARGE TIME BEHAVIOR; ATTRACTORS;
D O I
10.1016/j.aml.2016.04.015
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we first prove the regularity in H-m(R-3) of weak solutions to the Navier-Stokes-Voigt equations with initial data in H-K (R-3) for all m <= K. Then we compute the upper bound of decay rate for these solutions, specifically, we prove that parallel to del(m)(u)(t)parallel to(2) + parallel to del(m+1)(u)(t)parallel to(2) <= c(1+t)(-3/2-m), for large t, when u(0) is an element of H-sigma(m+1)(R-3) boolean AND L-1(R-3), m is an element of N. (C) 2016 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1 / 7
页数:7
相关论文
共 11 条
[1]   On questions of decay and existence for the viscous Camassa-Holm equations [J].
Bjorland, Clayton ;
Schonbek, Maria E. .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2008, 25 (05) :907-936
[2]  
Cao YP, 2006, COMMUN MATH SCI, V4, P823
[3]   Pull-back attractors for three-dimensional Navier-Stokes-Voigt equations in some unbounded domains [J].
Cung The Anh ;
Pham Thi Trang .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2013, 143 (02) :223-251
[4]   Pullback attractors for three-dimensional non-autonomous Navier-Stokes-Voigt equations [J].
Garcia-Luengo, Julia ;
Marin-Rubio, Pedro ;
Real, Jose .
NONLINEARITY, 2012, 25 (04) :905-930
[5]   Global Attractors and Determining Modes for the 3D Navier-Stokes-Voight Equations [J].
Kalantarov, Varga K. ;
Titi, Edriss S. .
CHINESE ANNALS OF MATHEMATICS SERIES B, 2009, 30 (06) :697-714
[6]   Decay characterization of solutions to Navier-Stokes-Voigt equations in terms of the initial datum [J].
Niche, Cesar J. .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2016, 260 (05) :4440-4453
[7]  
Oskolkov A. P., 1973, ZAP NAUCN SEM LENING, V38, P98, DOI DOI 10.1007/BF01084613
[9]   LARGE TIME BEHAVIOR OF SOLUTIONS TO THE NAVIER-STOKES EQUATIONS IN H-M SPACES [J].
SCHONBEK, ME .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 1995, 20 (1-2) :103-117
[10]   ATTRACTORS FOR AUTONOMOUS AND NONAUTONOMOUS 3D NAVIER-STOKES-VOIGHT EQUATIONS [J].
Yue, Gaocheng ;
Zhong, Chengkui .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2011, 16 (03) :985-1002