Enhanced ion acceleration using the high-energy petawatt PETAL laser

被引:28
|
作者
Raffestin, D. [1 ,2 ]
Lecherbourg, L. [3 ]
Lantuejoul, I. [3 ]
Vauzour, B. [3 ]
Masson-Laborde, P. E. [3 ,4 ]
Davoine, X. [3 ,4 ]
Blanchot, N. [1 ]
Dubois, J. L. [1 ,2 ]
Vaisseau, X. [3 ]
d'Humieres, E. [2 ]
Gremillet, L. [3 ,4 ]
Duval, A. [3 ]
Reverdin, Ch. [3 ]
Rosse, B. [3 ]
Boutoux, G. [3 ]
Ducret, J. E. [5 ]
Rousseaux, Ch. [3 ]
Tikhonchuk, V. [2 ,6 ]
Batani, D. [2 ]
机构
[1] CEA, CESTA, CESTA, F-33116 Le Barp, France
[2] Univ Bordeaux, CNRS CEA, UMR 5107, Ctr Laser Intenses & Applicat, F-33405 Talence, France
[3] CEA, DIF, DAM, F-91297 Arpajon, France
[4] Univ Paris Saclay, CEA, LMCE, F-91680 Bruyeres Le Chatel, France
[5] CEA, GANIL, IRFU, DRF, F-14000 Caen, France
[6] Beamlines Res Ctr, ELI, Dolni Brezany 25241, Czech Republic
关键词
ELECTRON; GENERATION; KILOJOULE; FACILITY; BEAMS;
D O I
10.1063/5.0046679
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The high-energy petawatt PETAL laser system was commissioned at CEA's Laser Megajoule facility during the 2017-2018 period. This paper reports in detail on the first experimental results obtained at PETAL on energetic particle and photon generation from solid foil targets, with special emphasis on proton acceleration. Despite a moderately relativistic (<10(19) W/cm(2)) laser intensity, proton energies as high as 51 MeV have been measured significantly above those expected from preliminary numerical simulations using idealized interaction conditions. Multidimensional hydrodynamic and kinetic simulations, taking into account the actual laser parameters, show the importance of the energetic electron production in the extended low-density preplasma created by the laser pedestal. This hot-electron generation occurs through two main pathways: (i) stimulated backscattering of the incoming laser light, triggering stochastic electron heating in the resulting counterpropagating laser beams; (ii) laser filamentation, leading to local intensifications of the laser field and plasma channeling, both of which tend to boost the electron acceleration. Moreover, owing to the large (similar to 100 mu m) waist and picosecond duration of the PETAL beam, the hot electrons can sustain a high electrostatic field at the target rear side for an extended period, thus enabling efficient target normal sheath acceleration of the rear-side protons. The particle distributions predicted by our numerical simulations are consistent with the measurements. (C) 2021 Author(s).
引用
收藏
页数:18
相关论文
共 50 条
  • [31] Enhanced ion acceleration in the relativistic transparent regime due to the laser rising edge
    Zhou, Wei-Jun
    Wang, Wei-Min
    Chen, Li-Ming
    PLASMA PHYSICS AND CONTROLLED FUSION, 2021, 63 (03)
  • [32] Investigation of laser ion acceleration in low-density targets using exploded foils
    d'Humieres, E.
    Antici, P.
    Glesser, M.
    Boeker, J.
    Cardelli, F.
    Chen, S.
    Feugeas, J. L.
    Filippi, F.
    Gauthier, M.
    Levy, A.
    Nicolai, P.
    Pepin, H.
    Romagnani, L.
    Sciscio, M.
    Tikhonchuk, V. T.
    Willi, O.
    Kieffer, J. C.
    Fuchs, J.
    PLASMA PHYSICS AND CONTROLLED FUSION, 2013, 55 (12)
  • [33] High-quality ion beams by irradiating a nano-structured target with a petawatt laser pulse
    Grech, M.
    Skupin, S.
    Nuter, R.
    Gremillet, L.
    Lefebvre, E.
    NEW JOURNAL OF PHYSICS, 2009, 11
  • [34] Fast ion acceleration in a foil plasma heated by a multi-picosecond high intensity laser
    Iwata, Natsumi
    Mima, Kunioki
    Sentoku, Yasuhiko
    Yogo, Akifumi
    Nagatomo, Hideo
    Nishimura, Hiroaki
    Azechi, Hiroshi
    PHYSICS OF PLASMAS, 2017, 24 (07)
  • [35] Ion energy scaling under optimum conditions of laser plasma acceleration from solid density targets
    Brantov, A. V.
    Govras, E. A.
    Bychenkov, V. Yu.
    Rozmus, W.
    PHYSICAL REVIEW SPECIAL TOPICS-ACCELERATORS AND BEAMS, 2015, 18 (02):
  • [36] High energy conversion efficiency in laser-proton acceleration by controlling laser-energy deposition onto thin foil targets
    Brenner, C. M.
    Robinson, A. P. L.
    Markey, K.
    Scott, R. H. H.
    Gray, R. J.
    Rosinski, M.
    Deppert, O.
    Badziak, J.
    Batani, D.
    Davies, J. R.
    Hassan, S. M.
    Lancaster, K. L.
    Li, K.
    Musgrave, I. O.
    Norreys, P. A.
    Pasley, J.
    Roth, M.
    Schlenvoigt, H. -P.
    Spindloe, C.
    Tatarakis, M.
    Winstone, T.
    Wolowski, J.
    Wyatt, D.
    McKenna, P.
    Neely, D.
    APPLIED PHYSICS LETTERS, 2014, 104 (08)
  • [37] Dependence of the ion energy on the parameters of the laser pulse and target in the radiation-pressure-dominated regime of acceleration
    Echkina, E. Yu.
    Inovenkov, I. N.
    Esirkepov, T. Zh.
    Pegoraro, F.
    Borghesi, M.
    Bulanov, S. V.
    PLASMA PHYSICS REPORTS, 2010, 36 (01) : 15 - 29
  • [38] Investigation of magnetic inhibition effect on ion acceleration at high laser intensities
    Huang, H.
    Zhang, Z. M.
    Zhang, B.
    Hong, W.
    He, S. K.
    Meng, L. B.
    Qi, W.
    Cui, B.
    Zhou, W. M.
    MATTER AND RADIATION AT EXTREMES, 2021, 6 (04)
  • [39] Preplasma effects on the generation of high-energy protons in ultraintense laser interaction with foil targets
    Zheng, F. L.
    Wu, S. Z.
    Zhang, H.
    Huang, T. W.
    Yu, M. Y.
    Zhou, C. T.
    He, X. T.
    PHYSICS OF PLASMAS, 2013, 20 (12)
  • [40] High-energy, high-repetition-rate ultraviolet pulses from an efficiency-enhanced, frequency-tripled laser
    Lu, Xinlin
    Peng, Yujie
    Wang, Wenyu
    Zhao, Yuanan
    Zhu, Xiangyu
    Leng, Yuxin
    HIGH POWER LASER SCIENCE AND ENGINEERING, 2021, 9