Enhanced ion acceleration using the high-energy petawatt PETAL laser

被引:28
|
作者
Raffestin, D. [1 ,2 ]
Lecherbourg, L. [3 ]
Lantuejoul, I. [3 ]
Vauzour, B. [3 ]
Masson-Laborde, P. E. [3 ,4 ]
Davoine, X. [3 ,4 ]
Blanchot, N. [1 ]
Dubois, J. L. [1 ,2 ]
Vaisseau, X. [3 ]
d'Humieres, E. [2 ]
Gremillet, L. [3 ,4 ]
Duval, A. [3 ]
Reverdin, Ch. [3 ]
Rosse, B. [3 ]
Boutoux, G. [3 ]
Ducret, J. E. [5 ]
Rousseaux, Ch. [3 ]
Tikhonchuk, V. [2 ,6 ]
Batani, D. [2 ]
机构
[1] CEA, CESTA, CESTA, F-33116 Le Barp, France
[2] Univ Bordeaux, CNRS CEA, UMR 5107, Ctr Laser Intenses & Applicat, F-33405 Talence, France
[3] CEA, DIF, DAM, F-91297 Arpajon, France
[4] Univ Paris Saclay, CEA, LMCE, F-91680 Bruyeres Le Chatel, France
[5] CEA, GANIL, IRFU, DRF, F-14000 Caen, France
[6] Beamlines Res Ctr, ELI, Dolni Brezany 25241, Czech Republic
关键词
ELECTRON; GENERATION; KILOJOULE; FACILITY; BEAMS;
D O I
10.1063/5.0046679
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The high-energy petawatt PETAL laser system was commissioned at CEA's Laser Megajoule facility during the 2017-2018 period. This paper reports in detail on the first experimental results obtained at PETAL on energetic particle and photon generation from solid foil targets, with special emphasis on proton acceleration. Despite a moderately relativistic (<10(19) W/cm(2)) laser intensity, proton energies as high as 51 MeV have been measured significantly above those expected from preliminary numerical simulations using idealized interaction conditions. Multidimensional hydrodynamic and kinetic simulations, taking into account the actual laser parameters, show the importance of the energetic electron production in the extended low-density preplasma created by the laser pedestal. This hot-electron generation occurs through two main pathways: (i) stimulated backscattering of the incoming laser light, triggering stochastic electron heating in the resulting counterpropagating laser beams; (ii) laser filamentation, leading to local intensifications of the laser field and plasma channeling, both of which tend to boost the electron acceleration. Moreover, owing to the large (similar to 100 mu m) waist and picosecond duration of the PETAL beam, the hot electrons can sustain a high electrostatic field at the target rear side for an extended period, thus enabling efficient target normal sheath acceleration of the rear-side protons. The particle distributions predicted by our numerical simulations are consistent with the measurements. (C) 2021 Author(s).
引用
收藏
页数:18
相关论文
共 50 条
  • [21] Enhancing laser-driven proton acceleration by using micro-pillar arrays at high drive energy
    Khaghani, Dimitri
    Lobet, Mathieu
    Borm, Bjoern
    Burr, Loiec
    Gaertner, Felix
    Gremillet, Laurent
    Movsesyan, Liana
    Rosmej, Olga
    Toimil-Molares, Maria Eugenia
    Wagner, Florian
    Neumayer, Paul
    SCIENTIFIC REPORTS, 2017, 7
  • [22] High-energy acceleration phenomena in extreme-radiation-plasma interactions
    Faure, J. C.
    Tordeux, D.
    Gremillet, L.
    Lemoine, M.
    PHYSICAL REVIEW E, 2024, 109 (01)
  • [23] Relativistic laser piston model: Ponderomotive ion acceleration in dense plasmas using ultraintense laser pulses
    Schlegel, T.
    Naumova, N.
    Tikhonchuk, V. T.
    Labaune, C.
    Sokolov, I. V.
    Mourou, G.
    PHYSICS OF PLASMAS, 2009, 16 (08)
  • [24] Numerical Simulation of Laser Ion Acceleration at Ultra High Intensity
    Tatomirescu, Dragos
    Popescu, Alexandra
    d'Humieres, Emmanuel
    Vizman, Daniel
    TIM15-16 PHYSICS CONFERENCE, 2017, 1796
  • [25] Threshold target thickness in high-contrast laser-driven ion acceleration
    Lecz, Zs
    Singh, P. K.
    Ter-Avetisyan, S.
    PHYSICS OF PLASMAS, 2022, 29 (10)
  • [26] Simulation of high-energy ion collisions with graphene fragments
    Bubin, Sergiy
    Wang, Bin
    Pantelides, Sokrates
    Varga, Kalman
    PHYSICAL REVIEW B, 2012, 85 (23):
  • [27] Self-generated surface magnetic fields inhibit laser-driven sheath acceleration of high-energy protons
    Nakatsutsumi, M.
    Sentoku, Y.
    Korzhimanov, A.
    Chen, S. N.
    Buffechoux, S.
    Kon, A.
    Atherton, B.
    Audebert, P.
    Geissel, M.
    Hurd, L.
    Kimmel, M.
    Rambo, P.
    Schollmeier, M.
    Schwarz, J.
    Starodubtsev, M.
    Gremillet, L.
    Kodama, R.
    Fuchs, J.
    NATURE COMMUNICATIONS, 2018, 9
  • [28] Polarization of high-energy electrons traversing a laser beam
    Kotkin, GL
    Perlt, H
    Serbo, VG
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 1998, 404 (2-3): : 430 - 436
  • [29] Capture And Transport Of High-Energy Laser-Generated Electrons Using Accelerator Optics
    Antici, P.
    Benedetti, C.
    Giacopello, D.
    Migliorati, M.
    Mostacci, A.
    Palumbo, L.
    LIGHT AT EXTREME INTENSITIES: OPPORTUNITIES AND TECHNOLOGICAL ISSUES OF THE EXTREME LIGHT INFRASTRUCTURE, 2010, 1228 : 346 - +
  • [30] Longitudinal laser ion acceleration in low density targets: experimental optimization on the Titan laser facility and numerical investigation of the ultra-high intensity limit
    d'Humieres, E.
    Chen, S.
    Lobet, M.
    Sciscio, M.
    Antici, P.
    Bailly-Grandvaux, M.
    Gangolf, T.
    Revet, G.
    Santos, J.
    Schroer, A. M.
    Willi, O.
    Tikhonchuk, V.
    Pepin, H.
    Fuchs, J.
    LASER ACCELERATION OF ELECTRONS, PROTONS, AND IONS III; AND MEDICAL APPLICATIONS OF LASER-GENERATED BEAMS OF PARTICLES III, 2015, 9514