Enhanced ion acceleration using the high-energy petawatt PETAL laser

被引:28
|
作者
Raffestin, D. [1 ,2 ]
Lecherbourg, L. [3 ]
Lantuejoul, I. [3 ]
Vauzour, B. [3 ]
Masson-Laborde, P. E. [3 ,4 ]
Davoine, X. [3 ,4 ]
Blanchot, N. [1 ]
Dubois, J. L. [1 ,2 ]
Vaisseau, X. [3 ]
d'Humieres, E. [2 ]
Gremillet, L. [3 ,4 ]
Duval, A. [3 ]
Reverdin, Ch. [3 ]
Rosse, B. [3 ]
Boutoux, G. [3 ]
Ducret, J. E. [5 ]
Rousseaux, Ch. [3 ]
Tikhonchuk, V. [2 ,6 ]
Batani, D. [2 ]
机构
[1] CEA, CESTA, CESTA, F-33116 Le Barp, France
[2] Univ Bordeaux, CNRS CEA, UMR 5107, Ctr Laser Intenses & Applicat, F-33405 Talence, France
[3] CEA, DIF, DAM, F-91297 Arpajon, France
[4] Univ Paris Saclay, CEA, LMCE, F-91680 Bruyeres Le Chatel, France
[5] CEA, GANIL, IRFU, DRF, F-14000 Caen, France
[6] Beamlines Res Ctr, ELI, Dolni Brezany 25241, Czech Republic
关键词
ELECTRON; GENERATION; KILOJOULE; FACILITY; BEAMS;
D O I
10.1063/5.0046679
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The high-energy petawatt PETAL laser system was commissioned at CEA's Laser Megajoule facility during the 2017-2018 period. This paper reports in detail on the first experimental results obtained at PETAL on energetic particle and photon generation from solid foil targets, with special emphasis on proton acceleration. Despite a moderately relativistic (<10(19) W/cm(2)) laser intensity, proton energies as high as 51 MeV have been measured significantly above those expected from preliminary numerical simulations using idealized interaction conditions. Multidimensional hydrodynamic and kinetic simulations, taking into account the actual laser parameters, show the importance of the energetic electron production in the extended low-density preplasma created by the laser pedestal. This hot-electron generation occurs through two main pathways: (i) stimulated backscattering of the incoming laser light, triggering stochastic electron heating in the resulting counterpropagating laser beams; (ii) laser filamentation, leading to local intensifications of the laser field and plasma channeling, both of which tend to boost the electron acceleration. Moreover, owing to the large (similar to 100 mu m) waist and picosecond duration of the PETAL beam, the hot electrons can sustain a high electrostatic field at the target rear side for an extended period, thus enabling efficient target normal sheath acceleration of the rear-side protons. The particle distributions predicted by our numerical simulations are consistent with the measurements. (C) 2021 Author(s).
引用
收藏
页数:18
相关论文
共 50 条
  • [1] Selective deuterium ion acceleration using the Vulcan petawatt laser
    Krygier, A. G.
    Morrison, J. T.
    Kar, S.
    Ahmed, H.
    Alejo, A.
    Clarke, R.
    Fuchs, J.
    Green, A.
    Jung, D.
    Kleinschmidt, A.
    Najmudin, Z.
    Nakamura, H.
    Norreys, P.
    Notley, M.
    Oliver, M.
    Roth, M.
    Vassura, L.
    Zepf, M.
    Borghesi, M.
    Freeman, R. R.
    PHYSICS OF PLASMAS, 2015, 22 (05)
  • [2] Enhanced laser absorption and ion acceleration by boron nitride nanotube targets and high-energy PW laser pulses
    Tosca, M.
    Morace, A.
    Schollmeier, M.
    Steinke, S.
    Shirvanyan, V.
    Arikawa, Y.
    Giuffrida, L.
    Margarone, D.
    Pleskunov, P.
    Choukourov, A.
    Whitney, R. R.
    Scammell, L. R.
    Korn, G.
    PHYSICAL REVIEW RESEARCH, 2024, 6 (02):
  • [3] Acceleration of high charge ion beams with achromatic divergence by petawatt laser pulses
    Steinke, S.
    Bin, J. H.
    Park, J.
    Ji, Q.
    Nakamura, K.
    Gonsalves, A. J.
    Bulanov, S. S.
    Thevenet, M.
    Toth, C.
    Vay, J-L
    Schroeder, C. B.
    Geddes, C. G. R.
    Esarey, E.
    Schenkel, T.
    Leemans, W. P.
    PHYSICAL REVIEW ACCELERATORS AND BEAMS, 2020, 23 (02):
  • [4] Laser acceleration of high-energy protons in variable density plasmas
    Antici, P.
    Fuchs, J.
    d'Humieres, E.
    Robiche, J.
    Brambrink, E.
    Atzeni, S.
    Schiavi, A.
    Sentoku, Y.
    Audebert, P.
    Pepin, H.
    NEW JOURNAL OF PHYSICS, 2009, 11
  • [5] Modeling of the petawatt PETAL laser chain using Miro code
    Coic, H.
    Airiau, J. -P.
    Blanchot, N.
    Bordenave, E.
    Rouyer, C.
    APPLIED OPTICS, 2017, 56 (34) : 9491 - 9501
  • [6] Experimental progress of laser-driven high-energy proton acceleration and new acceleration schemes
    Ma Wen-Jun
    Liu Zhi-Peng
    Wang Peng-Jie
    Zhao Jia-Rui
    Yan Xue-Qing
    ACTA PHYSICA SINICA, 2021, 70 (08)
  • [7] Scaling and design of high-energy laser plasma electron acceleration
    Nakajima, Kazuhisa
    Kim, Hyung Taek
    Jeong, Tae Moon
    Nam, Chang Hee
    HIGH POWER LASER SCIENCE AND ENGINEERING, 2015, 3
  • [8] Enhanced laser ion acceleration with a multi-layer foam target assembly
    Yazdani, E.
    Sadighi-Bonabi, R.
    Afarideh, H.
    Yazdanpanah, J.
    Hora, H.
    LASER AND PARTICLE BEAMS, 2014, 32 (04) : 509 - 515
  • [9] Multi-pulse enhanced laser ion acceleration using plasma half cavity targets
    Scott, G. G.
    Green, J. S.
    Bagnoud, V.
    Brabetz, C.
    Brenner, C. M.
    Carroll, D. C.
    MacLellan, D. A.
    Robinson, A. P. L.
    Roth, M.
    Spindloe, C.
    Wagner, F.
    Zielbauer, B.
    McKenna, P.
    Neely, D.
    APPLIED PHYSICS LETTERS, 2012, 101 (02)
  • [10] High-energy THz pulses for electron acceleration
    Kaertner, Franz X.
    2018 IEEE PHOTONICS CONFERENCE (IPC), 2018,