Regression analysis and dependence

被引:4
作者
González-Barrios, JM [1 ]
Ruiz-Velasco, S [1 ]
机构
[1] Univ Nacl Autonoma Mexico, IIMAS, Dept Probabil & Stat, Mexico City 01000, DF, Mexico
关键词
regresion analysis; nonlinear models; multivariate dependency measures; Copulas; model selection;
D O I
10.1007/s001840400325
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper we study the relationship between regression analysis and a multivariate dependency measure. If the general regression model Y =f(X(i1); X(i2);...; X(im)) holds for some function f, where 1 less than or equal to i(1) < i(2) <... i(m) less than or equal to k, and X(1);...; X(k) is a set of possible explanatory random variables for Y. Then there exists a dependency relation between the random variable Y and the random vector (X(i1); X(i2);...; X(im)). Using the dependency statistic delta(Y,(Xi1;...; Xim))(j), defined below, we can detect such dependency even if the function f is not linear. We present several examples with real and simulated data to illustrate this assertion. We also present a way to select the appropriate subset X(i1);...; X(im) among the random variables X(1); X(2);...; X(k), which better explain Y.
引用
收藏
页码:73 / 87
页数:15
相关论文
共 14 条
[1]   Robust stepwise regression [J].
Agostinelli, C .
JOURNAL OF APPLIED STATISTICS, 2002, 29 (06) :825-840
[2]  
[Anonymous], APPL REGRESSION ANAL
[3]  
[Anonymous], 1982, Introduction to Linear Regression Analysis
[4]   Multidimensional dependency measures [J].
Fernández, BF ;
González-Barrios, JM .
JOURNAL OF MULTIVARIATE ANALYSIS, 2004, 89 (02) :351-370
[5]   The application of a new dependency measure to principal component analysis [J].
González-Barrios, JM ;
Ruiz-Velasco, S .
COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2003, 32 (03) :899-921
[6]  
GONZALEZBARRIOS JM, 2003, CONT MATH AMS, P336
[7]  
HAMPEL FR, 1986, WILEY SERIES PROB MA
[8]   A more general criterion for subset selection in multiple linear regression [J].
Kashid, DN ;
Kulkarni, SR .
COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2002, 31 (05) :795-811
[9]  
Miller A, 2002, Subset Selection in Regression
[10]  
MOORE J, 1975, THESIS U MINNESOTA