LixMn2O4 ultrathin nanosheets with faster Li+ diffusion for highly reversible Li-ions batteries

被引:7
作者
Zhou, Junli [1 ]
Zhang, Yajun [1 ]
Chen, Haoming [1 ]
Liu, Zhousheng [2 ]
Yang, Yin [2 ]
Yu, Lin [1 ]
机构
[1] Guangdong Univ Technol, Fac Chem Engn & Light Ind, Guangdong Higher Educ Inst, Key Lab Clean Chem Technol, Guangzhou 510006, Guangdong, Peoples R China
[2] Nanjing Tech Univ Nanjing Tech, Jiangsu Natl Synerget Innovat Ctr Adv Mat SICAM, SCME, IAS, 30 South Puzhu Rd, Nanjing 211861, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
Ultrathin; Nanosheets; Diffusion; Cathode; Electrical properties; CATHODE MATERIAL; LITHIUM; LIMN2O4;
D O I
10.1016/j.matlet.2018.10.141
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this work, spinel LixMn2O4 with high crystallinity are successfully synthesized via a simple polyol-reflux process. Li0.93Mn2O4 shows ultrathin nanosheets structure (4 nm in thickness) with exposed {1 1 1} facets, which can effectively restrain the Mn dissolution. The Li0.93Mn2O4 (LMO-1) nanosheets delivers much larger Li+ diffusion coefficient (2.50 x 10(-11) cm(2) s(-1)) and much higher discharge capacity (124.6 mAh g(-1) at 0.1 C) than that of commercial particles (104.1 mAh g(-1), 2.97 x 10(-12) cm (2) s(-1)) and makes the discharge capacity approaching the theoretical capacity (138.24 mAh g(-1)). Moreover, the obtained Li0.93Mn2O4 nanosheets have high initial coulombic efficiency (99.6%) and 92% capacity retentions up to 100 cycles, indicating high reversible performance. (C) 2018 Elsevier B.V. All rights reserved.
引用
收藏
页码:358 / 361
页数:4
相关论文
共 9 条
  • [1] Dynamic Structural Changes at LiMn2O4/Electrolyte Interface during Lithium Battery Reaction
    Hirayama, Masaaki
    Ido, Hedekazu
    Kim, KyungSu
    Cho, Woosuk
    Tamura, Kazuhisa
    Mizuki, Jun'ichiro
    Kanno, Ryoji
    [J]. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2010, 132 (43) : 15268 - 15276
  • [2] Three-Dimension Hierarchical Al2O3 Nanosheets Wrapped LiMn2O4 with Enhanced Cycling Stability as Cathode Material for Lithium Ion Batteries
    Lai, Feiyan
    Zhang, Xiaohui
    Wang, Hongqiang
    Hu, Sijiang
    Wu, Xianming
    Wu, Qiang
    Huang, Youguo
    He, Zeqiang
    Li, Qingyu
    [J]. ACS APPLIED MATERIALS & INTERFACES, 2016, 8 (33) : 21656 - 21665
  • [3] Mechanism of the electrochemical insertion of lithium into LiMn2O4 spinels
    Liu, W
    Kowal, K
    Farrington, GC
    [J]. JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1998, 145 (02) : 459 - 465
  • [4] Nanoporous LiMn2O4 nanosheets with exposed {111} facets as cathodes for highly reversible lithium-ion batteries
    Sun, Weiwei
    Cao, Feng
    Liu, Yumin
    Zhao, Xingzhong
    Liu, Xiaogang
    Yuan, Jikang
    [J]. JOURNAL OF MATERIALS CHEMISTRY, 2012, 22 (39) : 20952 - 20957
  • [5] LiMn2O4 Nanotube as Cathode Material of Second-Level Charge Capability for Aqueous Rechargeable Batteries
    Tang, Wei
    Hou, Yuyang
    Wang, Faxing
    Liu, Lili
    Wu, Yuping
    Zhu, Kai
    [J]. NANO LETTERS, 2013, 13 (05) : 2036 - 2040
  • [6] Thackeray MM, 1998, ELECTROCHEM SOLID ST, V1, P7, DOI 10.1149/1.1390617
  • [7] Manganese dissolution from LiMn2O4 cathodes at elevated temperature: methylene methanedisulfonate as electrolyte additive
    Wang, Renheng
    Li, Xinhai
    Wang, Zhixing
    Guo, Huajun
    [J]. JOURNAL OF SOLID STATE ELECTROCHEMISTRY, 2016, 20 (01) : 19 - 28
  • [8] A novel method for preparation of macroposous lithium nickel manganese oxygen as cathode material for lithium ion batteries
    Wang, Xiaoya
    Hao, Hao
    Liu, Jiali
    Huang, Tao
    Yu, Aishui
    [J]. ELECTROCHIMICA ACTA, 2011, 56 (11) : 4065 - 4069
  • [9] Hierarchical LiMn2O4 Hollow Cubes with Exposed {111} Planes as High-Power Cathodes for Lithium-Ion Batteries
    Wu, Yu
    Cao, Chuanbao
    Zhang, Junting
    Wang, Lin
    Ma, Xilan
    Xu, Xingyan
    [J]. ACS APPLIED MATERIALS & INTERFACES, 2016, 8 (30) : 19567 - 19572