Methylpiperidine-functionalized graphene oxide for efficient curing acceleration and gas barrier of polymer nanocomposites

被引:16
作者
Jin, Jeong-Un [1 ,2 ]
Lee, Dong-Hoon [2 ]
Nam, Ki-Ho [1 ]
Yu, Jaesang [1 ]
Kim, Young-Kwan [1 ]
Goh, Munju [1 ]
Kim, Seo Gyun [3 ]
Lee, Heon Sang [3 ]
Ku, Bon-Cheol [1 ]
You, Nam-Ho [1 ]
机构
[1] Korea Inst Sci & Technol, Inst Adv Composites Mat, Carbon Composite Mat Res Ctr, Chudong Ro 92, Wanju Gun 565905, Jeollabuk Do, South Korea
[2] Uiduk Univ, Dept Semicond Energy Engn, Gyeonju Si 780713, Gyengsangbuk Do, South Korea
[3] Dong A Univ, Dept Chem Engn, Nakdong Daero 550, Busan 604714, South Korea
基金
新加坡国家研究基金会;
关键词
Polyimide; Functionalized graphene oxide; Low temperature imidization; Oxygen barrier; Thermal stability; POLYIMIDE NANOCOMPOSITES; MECHANICAL-PROPERTIES; IMIDIZATION; EPOXY;
D O I
10.1016/j.apsusc.2018.09.086
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We synthesized methylpiperidine-functionalized graphene oxide (MP-GO) by introducing 4-amino-1-methylpiperidine into reactive epoxy and/or carboxylic acid groups on pristine GO. Then, we applied the MP-GO as a curing catalyst for polyimide (PI) nanocomposites. The MP-GO was found to be an effective base-catalysts for the thermal conversion of polyamic acid (PAA) precursor to PI. Interestingly, when 3 wt% of MP-GO was added to the PI matrix, the complete imidization of nanocomposites was achieved at a temperature lower than 200 degrees C. In addition, the PI/MP-GO nanocomposite films exhibited reinforcement of the oxygen barrier properties which were even better than those of pristine PI, due to the excellent dispersion state of MP-GO and the favorable noncovalent interaction between MP-GO and the PI matrix. Comparison to pristine PI, the oxygen permeability of nanocomposite films that contained only 1 wt% of MP-GO loading was significantly decreased, by about 80%. Furthermore, all the PI/MP-GO nanocomposites exhibited high thermal stability.
引用
收藏
页码:509 / 515
页数:7
相关论文
共 39 条
[1]   CURING STUDIES OF A POLYIMIDE PRECURSOR .2. POLYAMIC ACID [J].
BREKNER, MJ ;
FEGER, C .
JOURNAL OF POLYMER SCIENCE PART A-POLYMER CHEMISTRY, 1987, 25 (09) :2479-2491
[2]   The chemistry of graphene oxide [J].
Dreyer, Daniel R. ;
Park, Sungjin ;
Bielawski, Christopher W. ;
Ruoff, Rodney S. .
CHEMICAL SOCIETY REVIEWS, 2010, 39 (01) :228-240
[3]   Insulator to Semimetal Transition in Graphene Oxide [J].
Eda, Goki ;
Mattevi, Cecilia ;
Yamaguchi, Hisato ;
Kim, HoKwon ;
Chhowalla, Manish .
JOURNAL OF PHYSICAL CHEMISTRY C, 2009, 113 (35) :15768-15771
[4]   Constructing hierarchically structured interphases for strong and tough epoxy nanocomposites by amine-rich graphene surfaces [J].
Fang, Ming ;
Zhang, Zhen ;
Li, Jianfeng ;
Zhang, Hongdong ;
Lu, Hongbin ;
Yang, Yuliang .
JOURNAL OF MATERIALS CHEMISTRY, 2010, 20 (43) :9635-9643
[5]   Covalent polymer functionalization of graphene nanosheets and mechanical properties of composites [J].
Fang, Ming ;
Wang, Kaigang ;
Lu, Hongbin ;
Yang, Yuliang ;
Nutt, Steven .
JOURNAL OF MATERIALS CHEMISTRY, 2009, 19 (38) :7098-7105
[6]   Efficient catalyst for low temperature solid-phase imidization of poly(amic acid) [J].
Fukukawa, K ;
Shibasaki, Y ;
Ueda, M .
CHEMISTRY LETTERS, 2004, 33 (09) :1156-1157
[7]   The rise of graphene [J].
Geim, A. K. ;
Novoselov, K. S. .
NATURE MATERIALS, 2007, 6 (03) :183-191
[8]   A new structural model for graphite oxide [J].
He, HY ;
Klinowski, J ;
Forster, M ;
Lerf, A .
CHEMICAL PHYSICS LETTERS, 1998, 287 (1-2) :53-56
[9]   Chemically Modified Graphene/Polyimide Composite Films Based on Utilization of Covalent Bonding and Oriented Distribution [J].
Huang, Ting ;
Lu, Renguo ;
Su, Chao ;
Wang, Hongna ;
Guo, Zheng ;
Liu, Pei ;
Huang, Zhongyuan ;
Chen, Haiming ;
Li, Tongsheng .
ACS APPLIED MATERIALS & INTERFACES, 2012, 4 (05) :2699-2708
[10]   Polyhedral Oligosilsesquioxane-Modified Boron Nitride Nanotube Based Epoxy Nanocomposites: An Ideal Dielectric Material with High Thermal Conductivity [J].
Huang, Xingyi ;
Zhi, Chunyi ;
Jiang, Pingkai ;
Golberg, Dmitri ;
Bando, Yoshio ;
Tanaka, Toshikatsu .
ADVANCED FUNCTIONAL MATERIALS, 2013, 23 (14) :1824-1831