On fitting a population model in the presence of observation error

被引:27
作者
Solow, AR [1 ]
机构
[1] Woods Hole Oceanog Inst, Woods Hole, MA 02543 USA
关键词
logistic model; observation error and bias; population models; SIMEX estimation;
D O I
10.2307/176759
中图分类号
Q14 [生态学(生物生态学)];
学科分类号
071012 ; 0713 ;
摘要
Observation error can lead to substantial bias in estimating the parameters of a population model. While maximum-likelihood estimation is possible in principle, it can be extremely difficult in practice due to the complicated behavior of the likelihood function. This note describes a simple method that can be used to fit a population model in the presence of observation error. The method is illustrated using the discrete-time logistic model.
引用
收藏
页码:1463 / 1466
页数:4
相关论文
共 9 条
[1]  
[Anonymous], 1982, ESTIMATION ANIMAL AB
[2]  
[Anonymous], 1992, ANAL POPULATION ECOL
[3]   LIKELIHOOD AND BAYESIAN PREDICTION OF CHAOTIC SYSTEMS [J].
BERLINER, LM .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1991, 86 (416) :938-952
[4]   SIMULATION-EXTRAPOLATION ESTIMATION IN PARAMETRIC MEASUREMENT ERROR MODELS [J].
COOK, JR ;
STEFANSKI, LA .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1994, 89 (428) :1314-1328
[5]  
Fuller W. A., 2009, Measurement error models
[6]  
May R. M., 1974, STABILITY COMPLEXITY
[7]   SIMPLE MATHEMATICAL-MODELS WITH VERY COMPLICATED DYNAMICS [J].
MAY, RM .
NATURE, 1976, 261 (5560) :459-467
[8]  
NISBET RM, 1982, MODELLING FLUCTUATIN
[9]  
SOLOW AR, 1995, ECOLOGICAL TIME SERI