Controlling light in complex media beyond the acoustic diffraction-limit using the acousto-optic transmission matrix

被引:50
作者
Katz, Ori [1 ,2 ,3 ]
Ramaz, Francois [2 ]
Gigan, Sylvain [3 ]
Fink, Mathias [2 ]
机构
[1] Hebrew Univ Jerusalem, Dept Appl Phys, IL-9190401 Jerusalem, Israel
[2] PSL Res Univ, CNRS, UMR7587, Inst Langevin,ESPCI Paris, 1 Rue Jussieu, F-75005 Paris, France
[3] Sorbonne Univ, Ecole Normale Super, Lab Kastler Brossel, Coll France,CNRS,UMR 8552, 24 Rue Lhomond, F-75005 Paris, France
基金
欧洲研究理事会;
关键词
TIME-REVERSAL OPERATOR; OPTICAL-PHASE CONJUGATION; DYNAMIC SCATTERING MEDIA; BROAD-BAND LIGHT; FOCUSING LIGHT; TURBIDITY SUPPRESSION; MICROSCOPY; DECOMPOSITION; REGIME; WAVES;
D O I
10.1038/s41467-019-08583-6
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Studying the internal structure of complex samples with light is an important task but a difficult challenge due to light scattering. While the complex optical distortions induced by scattering can be effectively undone if the medium's scattering-matrix is known, this matrix generally cannot be retrieved without the presence of an invasive detector or guide-star at the target points of interest. To overcome this limitation, the current state-of-the-art approaches utilize focused ultrasound for generating acousto-optic guide-stars, in a variety of different techniques. Here, we introduce the acousto-optic transmission matrix (AOTM), which is an ultrasonically-encoded, spatially-resolved, optical scattering-matrix. The AOTM provides both a generalized framework to describe any acousto-optic based technique, and a tool for light control and focusing beyond the acoustic diffraction-limit inside complex samples. We experimentally demonstrate complex light control using the AOTM singular vectors, and utilize the AOTM framework to analyze the resolution limitation of acoustooptic guided focusing approaches.
引用
收藏
页数:10
相关论文
共 62 条
[21]  
Horton NG, 2013, NAT PHOTONICS, V7, P205, DOI [10.1038/nphoton.2012.336, 10.1038/NPHOTON.2012.336]
[22]   Digital phase conjugation of second harmonic radiation emitted by nanoparticles in turbid media [J].
Hsieh, Chia-Lung ;
Pu, Ye ;
Grange, Rachel ;
Psaltis, Demetri .
OPTICS EXPRESS, 2010, 18 (12) :12283-12290
[23]   Focusing of light energy inside a scattering medium by controlling the time-gated multiple light scattering [J].
Jeong, Seungwon ;
Lee, Ye-Ryoung ;
Choi, Wonjun ;
Kang, Sungsam ;
Hong, Jin Hee ;
Park, Jin-Sung ;
Lim, Yong-Sik ;
Park, Hong-Gyu ;
Choi, Wonshik .
NATURE PHOTONICS, 2018, 12 (05) :277-+
[24]   Translation correlations in anisotropically scattering media [J].
Judkewitz, Benjamin ;
Horstmeyer, Roarke ;
Vellekoop, Ivo M. ;
Papadopoulos, Ioannis N. ;
Yang, Changhuei .
NATURE PHYSICS, 2015, 11 (08) :684-689
[25]  
Judkewitz B, 2013, NAT PHOTONICS, V7, P300, DOI [10.1038/nphoton.2013.31, 10.1038/NPHOTON.2013.31]
[26]   Noninvasive nonlinear focusing and imaging through strongly scattering turbid layers [J].
Katz, Ori ;
Small, Eran ;
Guan, Yefeng ;
Silberberg, Yaron .
OPTICA, 2014, 1 (03) :170-174
[27]   Looking around corners and through thin turbid layers in real time with scattered incoherent light [J].
Katz, Ori ;
Small, Eran ;
Silberberg, Yaron .
NATURE PHOTONICS, 2012, 6 (08) :549-553
[28]  
Katz O, 2011, NAT PHOTONICS, V5, P372, DOI [10.1038/NPHOTON.2011.72, 10.1038/nphoton.2011.72]
[29]   Maximal energy transport through disordered media with the implementation of transmission eigenchannels [J].
Kim, Moonseok ;
Choi, Youngwoon ;
Yoon, Changhyeong ;
Choi, Wonjun ;
Kim, Jaisoon ;
Park, Q-Han ;
Choi, Wonshik .
NATURE PHOTONICS, 2012, 6 (09) :581-585
[30]  
Komilikis S, 1996, ULTRASON, P1401, DOI 10.1109/ULTSYM.1996.584307