Classification of irreducible representations of Lie algebra of vector fields on a torus

被引:63
作者
Billig, Yuly [1 ]
Futorny, Vyacheslav [2 ]
机构
[1] Carleton Univ, Sch Math & Stat, Ottawa, ON, Canada
[2] Univ Sao Paulo, Inst Matemat & Estat, Sao Paulo, Brazil
来源
JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK | 2016年 / 720卷
基金
加拿大自然科学与工程研究理事会; 巴西圣保罗研究基金会;
关键词
HARISH-CHANDRA MODULES; WEIGHT MODULES; DIFFEOMORPHISMS;
D O I
10.1515/crelle-2014-0059
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We solve a long standing problem of the classification of all simple modules with finite-dimensional weight spaces over Lie algebra of vector fields on n-dimensional torus for any n. This generalizes the classical result of O. Mathieu on simple weight modules for the Virasoro algebra (n = 1). Every such module is either of a highest weight type or is a quotient of a module of tensor fields on a torus, which was conjectured by Eswara Rao.
引用
收藏
页码:199 / 216
页数:18
相关论文
共 27 条
[21]   Supports of weight modules over Witt algebras [J].
Mazorchuk, Volodymyr ;
Zhao, Kaiming .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2011, 141 :155-170
[22]   Partial classification of modules for Lie-algebra of diffeomorphisms of d-dimensional torus [J].
Rao, SE .
JOURNAL OF MATHEMATICAL PHYSICS, 2004, 45 (08) :3322-3333
[23]   Irreducible representations of the Lie-algebra of the diffeomorphisms of a d-dimensional torus [J].
Rao, SE .
JOURNAL OF ALGEBRA, 1996, 182 (02) :401-421
[24]  
Rudakov A. N., 1974, IZV AKAD NAUK SSSR M, V8, P835, DOI [DOI 10.1070/IM1974V008N04ABEH002129, 10.1070/IM1974v008n04ABEH002129]
[25]  
SHEN GG, 1986, SCI CHINA SER A, V29, P570
[26]   Classification of Harish-Chandra modules over the higher rank Virasoro algebras [J].
Su, YC .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2003, 240 (03) :539-551
[27]   Simple modules over the high rank Virasoro algebras [J].
Su, YC .
COMMUNICATIONS IN ALGEBRA, 2001, 29 (05) :2067-2080