Classification of irreducible representations of Lie algebra of vector fields on a torus

被引:64
作者
Billig, Yuly [1 ]
Futorny, Vyacheslav [2 ]
机构
[1] Carleton Univ, Sch Math & Stat, Ottawa, ON, Canada
[2] Univ Sao Paulo, Inst Matemat & Estat, Sao Paulo, Brazil
来源
JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK | 2016年 / 720卷
基金
加拿大自然科学与工程研究理事会; 巴西圣保罗研究基金会;
关键词
HARISH-CHANDRA MODULES; WEIGHT MODULES; DIFFEOMORPHISMS;
D O I
10.1515/crelle-2014-0059
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We solve a long standing problem of the classification of all simple modules with finite-dimensional weight spaces over Lie algebra of vector fields on n-dimensional torus for any n. This generalizes the classical result of O. Mathieu on simple weight modules for the Virasoro algebra (n = 1). Every such module is either of a highest weight type or is a quotient of a module of tensor fields on a torus, which was conjectured by Eswara Rao.
引用
收藏
页码:199 / 216
页数:18
相关论文
共 27 条
[1]   Irreducible representations for toroidal Lie algebras [J].
Berman, S ;
Billig, Y .
JOURNAL OF ALGEBRA, 1999, 221 (01) :188-231
[2]   Weight modules over exp-polynomial Lie algebras [J].
Billig, Y ;
Zhao, KM .
JOURNAL OF PURE AND APPLIED ALGEBRA, 2004, 191 (1-2) :23-42
[3]  
Billig Y., 2013, PREPRINT
[4]   Jet modules [J].
Billig, Yuly .
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2007, 59 (04) :712-729
[5]   REPRESENTATIONS OF THE LIE ALGEBRA OF VECTOR FIELDS ON A TORUS AND THE CHIRAL DE RHAM COMPLEX [J].
Billig, Yuly ;
Futorny, Vyacheslav .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2014, 366 (09) :4697-4731
[6]   Bounded length 3 representations of the Virasoro Lie algebra [J].
Conley, CH .
INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2001, 2001 (12) :609-628
[7]   Annihilators of tensor density modules [J].
Conley, Charles H. ;
Martin, Christiane .
JOURNAL OF ALGEBRA, 2007, 312 (01) :495-526
[8]   HOMOLOGY OF THE LIE-ALGEBRA OF VECTOR-FIELDS ON THE LINE [J].
FEIGIN, BL ;
FUKS, DB .
FUNCTIONAL ANALYSIS AND ITS APPLICATIONS, 1980, 14 (03) :201-212
[9]  
Fuks D. B., 1986, CONT SOVIET MATH
[10]   On the classification of admissible representations of the virasoro algebra [J].
Germoni, J .
LETTERS IN MATHEMATICAL PHYSICS, 2001, 55 (02) :169-177