ATP-induced asymmetric pre-protein folding as a driver of protein translocation through the Sec machinery

被引:28
作者
Corey, Robin A. [1 ,7 ]
Ahdash, Zainab [2 ]
Shah, Anokhi [3 ,4 ]
Pyle, Euan [2 ,5 ]
Allen, William J. [1 ]
Fessl, Tomas [6 ]
Lovett, Janet E. [3 ,4 ]
Politis, Argyris [2 ]
Collinson, Ian [1 ]
机构
[1] Univ Bristol, Sch Biochem, Bristol, Avon, England
[2] Kings Coll London, Dept Chem, London, England
[3] Univ St Andrews, SUPA Sch Phys & Astron, St Andrews, Fife, Scotland
[4] Univ St Andrews, BSRC, St Andrews, Fife, Scotland
[5] Imperial Coll London, Dept Chem, London, England
[6] Univ South Bohemia Ceske Budejovice, Ceske Budejovice, Czech Republic
[7] Univ Oxford, Dept Biochem, Oxford, England
基金
英国工程与自然科学研究理事会; 英国生物技术与生命科学研究理事会; 芬兰科学院; 英国惠康基金;
关键词
MOLECULAR-DYNAMICS; FORCE-FIELD; SECRETORY PROTEINS; HYDROGEN-EXCHANGE; 2-HELIX FINGER; SITE; TRANSPORT; SEQUENCE; COMPLEX; BINDING;
D O I
10.7554/eLife.41803
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Transport of proteins across membranes is a fundamental process, achieved in every cell by the 'Sec' translocon. In prokaryotes, SecYEG associates with the motor ATPase SecA to carry out translocation for pre-protein secretion. Previously, we proposed a Brownian ratchet model for transport, whereby the free energy of ATP-turnover favours the directional diffusion of the polypeptide (Allen et al., 2016). Here, we show that ATP enhances this process by modulating secondary structure formation within the translocating protein. A combination of molecular simulation with hydrogendeuterium-exchange mass spectrometry and electron paramagnetic resonance spectroscopy reveal an asymmetry across the membrane: ATP-induced conformational changes in the cytosolic cavity promote unfolded pre-protein structure, while the exterior cavity favours its formation. This ability to exploit structure within a pre-protein is an unexplored area of protein transport, which may apply to other protein transporters, such as those of the endoplasmic reticulum and mitochondria.
引用
收藏
页码:1 / 25
页数:25
相关论文
共 85 条
[1]   Two-way communication between SecY and SecA suggests a Brownian ratchet mechanism for protein translocation [J].
Allen, William John ;
Corey, Robin Adam ;
Oatley, Peter ;
Sessions, Richard Barry ;
Baldwin, Steve A. ;
Radford, Sheena E. ;
Tuma, Roman ;
Collinson, Ian .
ELIFE, 2016, 5
[2]  
[Anonymous], 2012, BMC RES NOTES, DOI DOI 10.1186/1756-0500-5-185
[3]   The periplasmic chaperone PpiD interacts with secretory proteins exiting from the SecYEG translocon [J].
Antonoaea, Raluca ;
Fuerst, Michaela ;
Nishiyama, Ken-ichi ;
Mueller, Matthias .
BIOCHEMISTRY, 2008, 47 (20) :5649-5656
[4]   TRANSLOCATION CAN DRIVE THE UNFOLDING OF A PREPROTEIN DOMAIN [J].
ARKOWITZ, RA ;
JOLY, JC ;
WICKNER, W .
EMBO JOURNAL, 1993, 12 (01) :243-253
[5]   A "Push and Slide" Mechanism Allows Sequence-Insensitive Translocation of Secretory Proteins by the SecA ATPase [J].
Bauer, Benedikt W. ;
Shemesh, Tom ;
Chen, Yu ;
Rapoport, Tom A. .
CELL, 2014, 157 (06) :1416-1429
[6]   Mapping polypeptide interactions of the SecA ATPase during translocation [J].
Bauer, Benedikt W. ;
Rapoport, Tom A. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2009, 106 (49) :20800-20805
[7]   GROMACS - A MESSAGE-PASSING PARALLEL MOLECULAR-DYNAMICS IMPLEMENTATION [J].
BERENDSEN, HJC ;
VANDERSPOEL, D ;
VANDRUNEN, R .
COMPUTER PHYSICS COMMUNICATIONS, 1995, 91 (1-3) :43-56
[8]   The Twin-Arginine Protein Franslocation Pathway [J].
Berks, Ben C. .
ANNUAL REVIEW OF BIOCHEMISTRY, VOL 84, 2015, 84 :843-864
[9]   A NOVEL REVERSIBLE THIOL-SPECIFIC SPIN LABEL - PAPAIN ACTIVE-SITE LABELING AND INHIBITION [J].
BERLINER, LJ ;
GRUNWALD, J ;
HANKOVSZKY, HO ;
HIDEG, K .
ANALYTICAL BIOCHEMISTRY, 1982, 119 (02) :450-455
[10]   Optimization of the Additive CHARMM All-Atom Protein Force Field Targeting Improved Sampling of the Backbone φ, ψ and Side-Chain χ1 and χ2 Dihedral Angles [J].
Best, Robert B. ;
Zhu, Xiao ;
Shim, Jihyun ;
Lopes, Pedro E. M. ;
Mittal, Jeetain ;
Feig, Michael ;
MacKerell, Alexander D., Jr. .
JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2012, 8 (09) :3257-3273