Within-subject template estimation for unbiased longitudinal image analysis

被引:1750
作者
Reuter, Martin [1 ,2 ,3 ]
Schmansky, Nicholas J. [1 ,2 ]
Rosas, H. Diana [1 ,2 ]
Fischl, Bruce [1 ,2 ,3 ]
机构
[1] Martinos Ctr Biomed Imaging, Charlestown, MA USA
[2] Harvard Univ, Massachusetts Gen Hosp, Sch Med, Boston, MA USA
[3] MIT Comp Sci & AI Lab, Cambridge, MA USA
关键词
Unbiased longitudinal image processing; MRI biomarkers; Reliability and power; Within-subject template; FreeSurfer; CONCORDANCE CORRELATION-COEFFICIENT; SURFACE-BASED ANALYSIS; HUMAN CEREBRAL-CORTEX; CORTICAL THICKNESS; HUNTINGTONS-DISEASE; GEOMETRICALLY ACCURATE; REGISTRATION; SEGMENTATION; ATROPHY; ROBUST;
D O I
10.1016/j.neuroimage.2012.02.084
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Longitudinal image analysis has become increasingly important in clinical studies of normal aging and neurodegenerative disorders. Furthermore, there is a growing appreciation of the potential utility of longitudinally acquired structural images and reliable image processing to evaluate disease modifying therapies. Challenges have been related to the variability that is inherent in the available cross-sectional processing tools, to the introduction of bias in longitudinal processing and to potential over-regularization. In this paper we introduce a novel longitudinal image processing framework, based on unbiased, robust, within-subject template creation, for automatic surface reconstruction and segmentation of brain MRI of arbitrarily many time points. We demonstrate that it is essential to treat all input images exactly the same as removing only interpolation asymmetries is not sufficient to remove processing bias. We successfully reduce variability and avoid over-regularization by initializing the processing in each time point with common information from the subject template. The presented results show a significant increase in precision and discrimination power while preserving the ability to detect large anatomical deviations; as such they hold great potential in clinical applications, e.g. allowing for smaller sample sizes or shorter trials to establish disease specific biomarkers or to quantify drug effects. (C) 2012 Elsevier Inc. All rights reserved.
引用
收藏
页码:1402 / 1418
页数:17
相关论文
共 68 条
  • [51] The Dynamics of Cortical and Hippocampal Atrophy in Alzheimer Disease
    Sabuncu, Mert R.
    Desikan, Rahul S.
    Sepulcre, Jorge
    Yeo, Boon Thye T.
    Liu, Hesheng
    Schmansky, Nicholas J.
    Reuter, Martin
    Weiner, Michael W.
    Buckner, Randy L.
    Sperling, Reisa A.
    Fischl, Bruce
    [J]. ARCHIVES OF NEUROLOGY, 2011, 68 (08) : 1040 - 1048
  • [52] A Generative Model for Image Segmentation Based on Label Fusion
    Sabuncu, Mert R.
    Yeo, B. T. Thomas
    Van Leemput, Koen
    Fischl, Bruce
    Golland, Polina
    [J]. IEEE TRANSACTIONS ON MEDICAL IMAGING, 2010, 29 (10) : 1714 - 1729
  • [53] Age-associated alterations in cortical gray and white matter signal intensity and gray to white matter contrast
    Salat, D. H.
    Lee, S. Y.
    van der Kouwe, A. J.
    Greve, D. N.
    Fischl, B.
    Rosas, H. D.
    [J]. NEUROIMAGE, 2009, 48 (01) : 21 - 28
  • [54] Geometrically accurate topology-correction of cortical surfaces using nonseparating loops
    Segonne, Florent
    Pacheco, Jenni
    Fischl, Bruce
    [J]. IEEE TRANSACTIONS ON MEDICAL IMAGING, 2007, 26 (04) : 518 - 529
  • [55] Arithmetic and geometric solutions for average rigid-body rotation
    Sharf, Inna
    Wolf, Alon
    Rubin, M. B.
    [J]. MECHANISM AND MACHINE THEORY, 2010, 45 (09) : 1239 - 1251
  • [56] INTRACLASS CORRELATIONS - USES IN ASSESSING RATER RELIABILITY
    SHROUT, PE
    FLEISS, JL
    [J]. PSYCHOLOGICAL BULLETIN, 1979, 86 (02) : 420 - 428
  • [57] A nonparametric method for automatic correction of intensity nonuniformity in MRI data
    Sled, JG
    Zijdenbos, AP
    Evans, AC
    [J]. IEEE TRANSACTIONS ON MEDICAL IMAGING, 1998, 17 (01) : 87 - 97
  • [58] Accurate, robust, and automated longitudinal and cross-sectional brain change analysis
    Smith, SM
    Zhang, YY
    Jenkinson, M
    Chen, J
    Matthews, PM
    Federico, A
    De Stefano, N
    [J]. NEUROIMAGE, 2002, 17 (01) : 479 - 489
  • [59] Normalized accurate measurement of longitudinal brain change
    Smith, SM
    De Stefano, N
    Jenkinson, M
    Matthews, PM
    [J]. JOURNAL OF COMPUTER ASSISTED TOMOGRAPHY, 2001, 25 (03) : 466 - 475
  • [60] Advances in functional and structural MR image analysis and implementation as FSL
    Smith, SM
    Jenkinson, M
    Woolrich, MW
    Beckmann, CF
    Behrens, TEJ
    Johansen-Berg, H
    Bannister, PR
    De Luca, M
    Drobnjak, I
    Flitney, DE
    Niazy, RK
    Saunders, J
    Vickers, J
    Zhang, YY
    De Stefano, N
    Brady, JM
    Matthews, PM
    [J]. NEUROIMAGE, 2004, 23 : S208 - S219