NH4F assisted and morphology-controlled fabrication of ZnCo2O4 nanostructures on Ni-foam for enhanced energy storage devices

被引:74
作者
Cheng, Lin [1 ]
Xu, Min [1 ]
Zhang, Qingsong [1 ]
Li, Guochang [2 ]
Chen, Jinxi [1 ]
Lou, Yongbing [1 ]
机构
[1] Southeast Univ, Sch Chem & Chem Engn, Nanjing 211189, Jiangsu, Peoples R China
[2] Nanjing Univ, Sch Chem & Chem Engn, Nanjing 210023, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
NH4F-Assisted; Morphology-controlled; Leaf-like ZnCo2O4; Full cell device; High energy density; HIGH-PERFORMANCE ELECTRODES; BINDER-FREE ELECTRODE; NICKEL FOAM; FACILE SYNTHESIS; ELECTROCHEMICAL PERFORMANCE; ORGANIC FRAMEWORKS; CARBON CLOTH; IN-SITU; SUPERCAPACITOR; NANOSHEETS;
D O I
10.1016/j.jallcom.2018.11.402
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Four morphology-dependent ZnCo2O4 nanoarchitectures on Ni-foam with the aid of auxiliary reagent ammonium fluoride (NH4F) were facilely synthesized via a simple hydrothermal method and a consequent annealing process. With the gradual increase of NH4F, there was a morphological transformation from nanoflake, through nanowire@nanoflake and hetero-nanowire, to hierarchical leaf-like. The BET surface area and the specific capacitance at 1 A g(-1) were both gradually improved, from 63.9 to 89.3 m(2)g(-1) and from 600 to 1700 F g(-1), respectively, during the process of morphological change. The hierarchical leaf-like ZnCo2O4 had the lowest charge transfer resistance and the highest capacitive behavior, as well as considerable cycling performance (110% after 8000 cycles at 2 A g(-1)). A full button cell combining both anode material (AC) and cathode material (leaf-like ZnCo2O4 ) displayed satisfying energy density (63 Wh kg(-1)) and power density (795.5 W kg(-1)) as well as firm cycling performance (98% retention after 4000 cycles). The successful illumination of LEDs by the constructed full cell implied the promising practicability for future industrial green energy-storage devices usage of the ZnCo2O4 nanomaterials. (C) 2018 Elsevier B.V. All rights reserved.
引用
收藏
页码:245 / 254
页数:10
相关论文
共 61 条
[1]   Engineering hierarchical ultrathin CuCo2O4 nanosheets array on Ni foam by rapid electrodeposition method toward high-performance binder-free supercapacitors [J].
Abbasi, Laleh ;
Arvand, Majid .
APPLIED SURFACE SCIENCE, 2018, 445 :272-280
[2]   Nanostructured materials for advanced energy conversion and storage devices [J].
Aricò, AS ;
Bruce, P ;
Scrosati, B ;
Tarascon, JM ;
Van Schalkwijk, W .
NATURE MATERIALS, 2005, 4 (05) :366-377
[3]   Preparation of ZnCo2O4 nanoflowers on a 3D carbon nanotube/nitrogen-doped graphene film and its electrochemical capacitance [J].
Bai, Wenlong ;
Tong, Hao ;
Gao, Zhenzhen ;
Yue, Shihong ;
Xing, Sichuan ;
Dong, Shengyang ;
Shen, Laifa ;
He, Jianping ;
Zhang, Xiaogang ;
Liang, Yanyu .
JOURNAL OF MATERIALS CHEMISTRY A, 2015, 3 (43) :21891-21898
[4]   Compressing Carbon Nanocages by Capillarity for Optimizing Porous Structures toward Ultrahigh-Volumetric-Performance Supercapacitors [J].
Bu, Yongfeng ;
Sun, Tao ;
Cai, Yuejin ;
Du, Lingyu ;
Zhuo, Ou ;
Yang, Lijun ;
Wu, Qiang ;
Wang, Xizhang ;
Hu, Zheng .
ADVANCED MATERIALS, 2017, 29 (24)
[5]   Hybrid micro-/nano-structures derived from metal-organic frameworks: preparation and applications in energy storage and conversion [J].
Cao, Xiehong ;
Tan, Chaoliang ;
Sindoro, Melinda ;
Zhang, Hua .
CHEMICAL SOCIETY REVIEWS, 2017, 46 (10) :2660-2677
[6]   N-rich porous carbons with a high graphitization degree and multiscale pore network for boosting high-rate supercapacitor with ultrafast charging [J].
Chang, Binbin ;
Shi, Weiwei ;
Han, Shicheng ;
Zhou, Yannan ;
Liu, Yaxuan ;
Zhang, Shouren ;
Yang, Baocheng .
CHEMICAL ENGINEERING JOURNAL, 2018, 350 :585-598
[7]   In situ construction of yolk-shell zinc cobaltite with uniform carbon doping for high performance asymmetric supercapacitors [J].
Chang, Xiaoya ;
Zang, Lei ;
Liu, Song ;
Wang, Mengying ;
Guo, Huinan ;
Wang, Caiyun ;
Wang, Yijing .
JOURNAL OF MATERIALS CHEMISTRY A, 2018, 6 (19) :9109-9115
[8]   Nanoflake NiMoO4 based smart supercapacitor for intelligent power balance monitoring [J].
Chavan, Harish S. ;
Hou, Bo ;
Ahmed, Abu Talha Aqueel ;
Jo, Yongcheol ;
Cho, Sangeun ;
Kim, Jongmin ;
Pawar, Sambhaji M. ;
Cha, SeungNam ;
Inamdar, Akbar I. ;
Im, Hyunsik ;
Kim, Hyungsang .
SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2018, 185 :166-173
[9]   Core-shell structured Ni3S2@Co(OH)2 nano-wires grown on Ni foam as binder-free electrode for asymmetric supercapacitors [J].
Chen, Fangshuai ;
Wang, Hui ;
Ji, Shan ;
Linkov, Vladimir ;
Wang, Rongfang .
CHEMICAL ENGINEERING JOURNAL, 2018, 345 :48-57
[10]   Electrospun carbon nanofibers coated with urchin-like ZnCo2O4 nanosheets as a flexible electrode material [J].
Chen, Hua ;
Jiang, Guohua ;
Yu, Weijiang ;
Liu, Depeng ;
Liu, Yongkun ;
Li, Lei ;
Huang, Qin ;
Tong, Zaizai .
JOURNAL OF MATERIALS CHEMISTRY A, 2016, 4 (16) :5958-5964